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Chapter 1 1

Background and Objectives 2

1.1 BEFORE YOU START READING 3

This is the third part of a series of three recommended practice documents that deal with 4

the selection, development and operation of forecasting solutions in the power market. It 5

provides information and guidelines regarding effective evaluation of forecasts, forecast so- 6

lutions and benchmarks and trials. 7

The first part Forecast Solution Selection Process deals with the selection and background 8

information necessary to collect and evaluate when developing or renewing a forecasting 9

solution for the power market. The second part, Design and Execution of Benchmarks and 10

Trials, of the series deal with benchmarks and trials in order to test or evaluate different 11

forecasting solutions against each other and the fit-for-purpose. The third part, Forecast 12

Solution Evaluation, which is the current document, provides information and guidelines 13

regarding effective evaluation of forecasts, forecast solutions and benchmarks and trials. The 14

fourth part, Meteorological and Power Data Requirements for real-time forecasting Appli- 15

cations provides guidance for the selection, deployment and maintenance of meteorological 16

sensors and the quality control of the data produced by those sensors with the objective 17

of maximising the value of the sensor data for real-time wind and solar power production 18

forecasting. 19

If yourmain interest is in (1) selecting a forecasting solution, (2) testing or evaluating different 20

forecasting solutions against each other, or (4) setting up meteorological sensors or power 21

measurements for real-time wind or solar power forecasting, please move on to part 1, 2 or 4 22

of this recommended practice guideline to obtain recommendations on any of these specific 23

issues, respectively. 24

25

It is also recommended that the table of contents be actively used to find the most relevant 26

topics. 27

1



2 Chapter 1. Background and Objectives

1.2 Introduction1

The evaluation of forecasts and forecast solutions is an essential task for any forecast provider2

aswell as end-user of forecasts. It is important because economically significant and business-3

relevant decisions are often based on evaluation results. Therefore, it is crucial to allocate4

significant attention to the design and execution of forecast evaluations to ensure that the5

results are significant, representative and relevant. Additionally, forecast skill and quality6

has to be understood and designed in the framework of forecast value in order to evaluate7

the quality of a forecast on the value it creates in the decision processes. This second8

edition of the recommended practices guideline focuses on a number of conceptual processes9

to introduce a framework for evaluation of wind and solar energy forecasting applications10

in the power industry. A comprehensive outline of forecast metrics is not part of this11

guideline. There are a number of very useful and comprehensive publications available (e.g.12

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11? ]) which will be specifically referenced. A state-of-the-art13

of forecast evaluation is also not part of this guidelines, as the process of standardization has14

only just started in the community. This topic will be covered in one of the next versions of15

this guideline.16

This part of the recommended practices guideline focuses on:17

1. Impact of forecast accuracy on application18

First, it’s often difficult to define the impact of forecast accuracy impact on the perfor-19

mance of an application metric, because forecasts are just one of many inputs. Second,20

trials or benchmarks often last longer than anticipated or are too short to generate21

trustworthy results. Thus, the Forecast User is often under pressure to either wrap22

up the evaluation quickly or to produce meaningful results with too little data. As a23

consequence, average absolute or squared errors are employed due to their simplicity,24

even though they seldom reflect the quality and value of a forecast solution for the25

Forecast User’s specific applications.26

2. Cost-Loss relationship of forecasts27

A forecast that performs best in one metric is not necessarily the best in terms of other28

metrics. In other words, there is no universally best evaluation metric. Using metrics29

that do not well reflect the relationship between forecast errors and the resulting cost in30

the Forecast User’s application, can lead to misleading conclusions and non-optimal31

(possibly poor) decisions. Knowing the cost-loss relationship of their applications and32

to be able to select an appropriate evaluation metric accordingly is important. This33

becomes especially important as forecasting products are becoming more complex and34

the interconnection between errors and their associated costs more proportional. Apart35

from more meaningful evaluation results, knowledge of the cost-loss relationship also36

helps the forecast service provider to optimize forecasts and develop custom forecast37

solutions that are tailored for the intended application.38

Evaluation of forecast solutions is a complex task and it is usually neither easy nor39



1.2. Introduction 3

recommended to simplify the evaluation process. As a general recommendation, such a 1

process needs to follow an evaluation paradigm that assigns the an appropriate level of 2

attention to three core principles of an evaluation process: 3

1. representativeness 4

2. significance 5

3. relevance 6

The setup of an evaluation process that satisfactorily addresses these three principles is the 7

focus of this recommended practice guideline. 8

In chapter 2 these three main principles are outlined and the general concept of evaluation 9

uncertainty is explained as this should be the basis for any evaluation task. In chapter 3, 10

the uncertainty of measurement data collection and reporting is explained as a basic issue 11

of evaluation and verification tasks. If forecasts are evaluated against data that has inherit 12

errors, results may still show some significance, but may no longer be considered relevant 13

and representative. In chapter 4 metrics for evaluation and verification will be conceptualized 14

and categorized in order to provide an issue-oriented guideline for the selection of metrics 15

in a evaluation framework. The last chapter 5 introduces the concept of developing such 16

an evaluation framework and provides practical information on how to maximize value of 17

operational forecasts and also how to conduct an evaluation for benchmarks, trials and new 18

forecasting techniques. Lastly, recommendations are made for a number of practical use 19

cases for power industry specific applications. 20





Chapter 2 1

Overview of Evaluation Uncertainty 2

Key Points
All performance evaluations of potential or ongoing forecast solutions have a degree of
uncertainty, which is associated with the three attributes of the performance evaluation
process: (1) representativeness, (2) significance and (3) relevance.
A carefully designed and implemented evaluation process that considers the key
issues in each of these three attributes can minimize the uncertainty and yield the
most meaningful results.
A disregard of these issues is likely to lead to uncertainty that is so high that the
conclusions of the evaluation process are meaningless and therefore decisions based
on the results are basically random.

3

Uncertainty is an inherent characteristic of the forecast evaluation process. The objective 4

of the design and execution of a forecast evaluation procedure is to minimize the uncertainty 5

and thereby reduce its impact on the decisions association with forecast selection or opti- 6

mization. In order to minimize forecast evaluation uncertainty it is useful to understand the 7

sources of uncertainty within the evaluation process. 8

The sources of forecast evaluation uncertainty can be linked to three key attributes of 9

the evaluation process: (1) representativeness (2) significance and (3) relevance. If any 10

one of these are not satisfactorily addressed, than an evaluation will not provide meaningful 11

information to the forecast solution selection process and the resources employed in the trial 12

or benchmark will essentially have been wasted. Unfortunately, it may not be obvious to the 13

conductor of a forecast evaluation or the user of the information produced by an evaluation 14

whether or not these three attributes have been satisfactorily addressed. This section will 15

present an overview of the key issues associated with each attribute. Subsequent sections of 16

this document will provide guidance on how to maximize the likelihood that each will be 17

satisfactorily addressed. 18

5



6 Chapter 2. Overview of Evaluation Uncertainty

2.1 Representativeness1

Representativeness refers to the relationship between the results of a forecast performance2

evaluation and the performance that is ultimately obtained in the operational use of a forecast3

solution. It essentially addresses the question of whether or not the results of the evaluation4

are likely to be a good predictor of the actual forecast performance that will be achieved for5

an operational application. These are many factors that influence the ability of the evaluation6

results to be a good predictor of future operational performance.7

Four of the most crucial factors are:8

1. size and composition of the evaluation sample,9

2. quality of the data from the forecast target sites,10

3. the formulation and enforcement of rules governing the submission of forecasts (some-11

times referred to as “fairness”),12

4. availability of a complete and consistent set of evaluation procedure information to all13

evaluation participants (sometimes referred to as “transparency”)14

2.1.1 Size and composition of the evaluation sample15

The size and composition of the evaluation sample are the most important representativeness16

factors. Both the size and composition of the sample is a key factor in determining the17

extent to which the results are influenced by random variation, or noise, compared to true18

differences in forecast skill. The followinf considerations are recommended in order to ensure19

representative evaluation samples:20

• Data set representation and composition:21

The selected data set should be representative for the application and forecasts should22

be compared with exactly the same data sets. Results of different locations, seasons,23

lead times etc. are in general not comparable. The composition should be constructed24

so that all significant modes of variation of the forecast variable (e.g. wind or solar25

power production) are included in the evaluation sample. For example, if there is26

a high wind season and a low wind season, then both should have a representative27

number of cases in the evaluation sample. Or, in the case of solar power forecasts,28

periods of cloudy weather should be included equally much than periods of clear sky29

periods. However, if this is not practical, then there should at least be a representative30

sample of the most important modes for the application.31

• Data set length:32

The size of the evaluation sample is one of the most important representativeness and33

significance factors. The size of the sample is a key factor in determining to what34

extent results are influenced by random variation, or noise, compared to true predictive35
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performance. The use of a small sample increases the probability that any conclusions 1

reached from the evaluation will be due to noise (random and unrepresentative events) 2

in the sample. For example, the occurrence of very unusual weather events for a few 3

days in a short sample may dominate the evaluation results. 4

That leads to the question of how large of a sample is adequate? A commonly used 5

target sample size guideline when gathering data for statistical analysis is 30. If all the 6

sample points are independent, then a sample of 30 provides a reasonable adequate 7

minimization that sampling noise will impact the conclusions. But the key phrase is 8

that the sample data points must be independent (uncorrelated) for this guideline to be 9

valid. However, weather processes are typically highly correlated over time periods of 10

3 to 4 days. This means that an adequate sample from a continuous evaluation period 11

should be 3 to 4 times larger than 30 or in other words, 90 to 120 days [10] (see also 12

5.1.2, 4.1.4 and 5.1.3.1). 13

• Data set consistency: 14

For a fair evaluation of a forecast, whether against other forecasts, measurements or 15

persistence, it is very important to use the same data set to derive the evaluation results. 16

If a certain forecast is not available for a specific time, this time has to be disregarded 17

for all the other forecasts or persistence as well. Else, if forecasts are for example 18

missing for days that are particularly difficult to predict, they would in total perform 19

much better than forecasts that are expected to have high errors at these days. This also 20

applies for curtailment data. It is important to evaluate a forecast against the weather 21

related performance and remove all non-weather related impacts that are out of the 22

forecasters control. Especially, if forecasts are evaluated against a persistence forecast, 23

e.g. in minute- or hour scale forecasts, where models are adopted to measurements 24

that may contain curtailment or failures due to turbine unavailability or communication 25

issues. In such cases, the corresponding persistence need to be computed accordingly. 26

If this is not done, the forecast performance of the persistence will be overestimated 27

and the performance of the forecast underestimated. 28

2.1.2 Data Quality 29

The quality of the data used in the forecast evaluation process can be a major source of 30

uncertainty. The data from the forecast target location is typically used for three purposes: 31

(1) training data for the statistical components of each forecast system, (2) real-time input data 32

to forecast production processes, which is especially important for very short-term forecast 33

time horizons (minutes to a few hours ahead) and (3) forecast outcome data (i.e. the actual 34

value used to compute forecast errors) for the evaluation of the forecast performance. If the 35

data have many quality issues, then the representativeness of all three of these applications is 36

compromised. The quality issues may include: (1) out of range or locked values, (2) biased 37

values due to issues with measurement devices or location of measurement, (3) badly or 38

not at all calibrated instruments and (4) power production data that are unrepresentative of 39
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meteorological conditions because of undocumented generation outages or curtailments. If1

a substantial amount of data with these issues is used in the evaluation process for any of the2

three purposes, the results will likely not be representative of the true skill of the forecasting3

solutions that are being evaluated.4

2.1.3 Forecast Submission Control5

A third important factor is the formulation and enforcement of rules for the submission6

of forecasts in the evaluation process. This is sometimes noted as a “fairness” issue and7

it is indeed an issue of fairness to the forecast providers who are typically competing to8

demonstrate the skill of their system and thereby obtain an award of a contract for their9

services. However, from the user’s perspective, it is a representativeness issue. If it is possible10

for some forecasting solution providers to provide forecasts with unrepresentative skill then11

the conclusions of the entire evaluation process are questionable. A couple of examples12

can illustrate this point. One example is a situation in which there is no enforcement of the13

forecast delivery time. In this case it would be possible for a forecast provider to deliver14

forecasts at a later time (perhaps overwriting a forecast that was delivered at the required time)15

and use later data to add skill to their forecast or even wait until the outcome for the forecast16

period is known. Although one might think that such explicit cheating is not likely to occur17

in this type of technical evaluation, experience has indicated that it is not that uncommon, if18

the forecast delivery protocol enables its occurrence.19

A second example, illustrate how the results might be manipulated without explicit20

cheating by taking advantage of loopholes in the rules. In this example the issue is that21

the evaluation protocol does not specify any penalty for missing a forecast delivery and the22

evaluationmetrics are simply computed onwhatever forecasts are submitted by each provider.23

As a forecast provider it is not difficult to estimate the “difficulty” of each forecast period and24

to simply not deliver any forecasts during periods that are likely to be difficult and therefore25

prone to large errors. This is an excellent way to improve forecast performance scores. Of26

course, it makes the results unrepresentative of what is actually needed by the user. Often it27

is good performance during the difficult forecast periods that is most valuable to a user.28

2.1.4 Process Information Dissemination29

A fourth key factor is the availability of a complete and consistent set of information about30

the forecast evaluation process to all participants. Incomplete or inconsistent information31

distribution can occur in many ways. For example, one participant may ask a question and32

the reply is only provided to the participant who submitted the inquiry. This can contribute to33

apparent differences in forecast skill that are not associated with true differences in the skills34

of the solution. This of course results in unrepresentative evaluation of the true differences35

in forecast skill among the solutions.36
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2.2 Significance 1

Significance refers to the ability to differentiate between performance differences that are 2

due to noise (quasi-random processes) in the evaluation process and those that are due to 3

meaningful differences in skill among forecast solutions. Performance differences that stem 4

from noise have basically no meaning and will not represent the performance differences that 5

a user will experience in a long-term operational application of a solution. Real performance 6

differences on the other hand should be stable and should not change if an evaluation process 7

is repeated, e.g., one year later. A certain degree of noise is inevitable in every evaluation 8

task but both, minimization of noise and awareness of the uncertainty it causes are crucial in 9

order to make reliable decisions on the evaluation results. 10

As mentioned above, repeatability is a good practical indication of significance in eval- 11

uation results. The highest potential for achieving repeatability is the use of a representative 12

evaluation sample. This means the sample should cover as many potential weather events, 13

seasons, and perhaps forecast locations as possible. Otherwise, there is a high probability 14

that the results will be different for features that are not well represented in the evaluation 15

sample. Thus, significance is highly related to representativeness and very much depends on 16

the evaluation sample size and composition. 17

2.2.1 Quantification of Uncertainty 18

In addition to noise minimization through the use of representative evaluation data sets, it is 19

also very useful to quantify the significance (i.e. the uncertainty) of the evaluation results. 20

Quantification of the uncertainty is important for decision making. For example, if a number 21

of forecast solutions are evaluated with a specified metric, but their differences are much 22

smaller than the uncertainty in the result due to e.g. measurement uncertainty, the meaning 23

of their ranking is actually very limited and should not be used for important decisions. 24

2.2.1.1 Method 1: Repeating the evaluation task 25

The simplest approach to estimate evaluation uncertainty would be to repeat the evaluation 26

task several times on different data sets. This approach is often effective, because the variation 27

or uncertainty of the evaluation results is typically attributable largely to their dependence 28

on the evaluation data set and therefore results often vary among different evaluation data 29

sets. However, since evaluation data sets are usually very limited, this is often not a feasible 30

approach. 31

2.2.1.2 Method 2: Bootstrap Resampling 32

A simple alternative method is to simulate different data sets, through the use of a bootstrap 33

resampling process. In this approach an evaluation data set of the same length as the original 34

data set is drawn from the original data set with replacement and the evaluation results are 35

derived on this set. By repeating this "N" times, "N" different evaluation results become 36
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available and their range can be seen as the evaluation uncertainty. Alternatively, parametric1

testing can also provide information on the significance of evaluation results. Typically two2

sample paired t-tests applied on the sets of error measures for each event provide a good3

estimate of the significance of the results. Diebold et al. [? ] proposed a variation of4

this t-test to account for temporal correlations in the data and can therefore provide a more5

accurate significance quantification. Messner et al. [10] also describes different parametric6

testing or bootstrap resampling approaches that can be employed to quantify the evaluation7

uncertainty.8

If it is found, that the forecast that is identified as the "best" froman evaluation process does9

not exhibit significantly better performance than some of the other benchmark participants,10

the final selection of forecast solutions should only consider differences among forecast11

solutions that are significant. For example, if there is a group of forecast solutions that are at12

the top of the metric-based performance ranking list, but there are no significant differences13

in performance among them, the selection process should treat them as equivalent in terms14

of forecast accuracy and the differentiation among them should be based on other factors.15

2.3 Relevance16

Relevance refers to the degree of alignment between the evaluation metrics used for an17

evaluation and the true sensitivity of a user’s application(s) to forecast error. If these two18

items are not well aligned then even though an evaluation process is representative and the19

results show significant differences among solutions, the evaluation results may not be a20

relevant basis for selecting the best solution for the application. There are a number of issues21

related to the relevance factor.22

1. Best Performance Metric23

First, the selection of the best metric may be complex and difficult. The ideal approach24

is to formulate a cost function that transforms forecast error to the application-related25

consequences of those errors. This could a monetary implication or it might be another26

type of consequence (for example a reliability metric for grid operations). However, if27

it is not feasible to do this, another approach is to use a matrix of performance metrics28

that measure a range of forecast performance attributes.29

2. Multiple Performance Metrics30

If there is a range of forecast performance attributes that are relevant to a user’s31

application, it most likely will not be possible to optimize a single forecast to achieve32

optimal performance for all of the relevant metrics. In that case, the best solution is to33

obtain multiple forecasts with each being optimized for a specific application and its34

associated metric.35

3. Multiple Forecast Solutions36

Another type of issue arises when the user intends to employ multiple (N) forecast37
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solutions and create a composite forecast from the information provided by each 1

individual forecast. In this case it may be tempting to select the best N performing 2

forecasts in the evaluation according to the metric or metrics identified as most relevant 3

by the user. However, that is not the best way to get the most relevant answer for the 4

multiple provider scenario. In that case the desired answer is to select the N forecasts 5

that provide the best composite forecast for the target metric(s). This may not be the 6

set of N forecasts that individually perform the best. It is the set of forecasts that best 7

complement each other. For example, the two best forecasts according to a metric such 8

as the RMSE may be highly correlated and provide essentially the same information. 9

In that case, a forecast solution with a higher (worse) RMSE may be less correlated 10

with the lowest RMSE forecast and therefore be a better complement to that forecast. 11
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Measurement Data Processing and Con-2

trol 3

Key Points

• Measurements from the forecast target facilities are crucial for the forecast
production and evaluation process and therefore much attention should be
given to how data is collected, communicated and quality controlled

• Collection and reporting of measurement data requires strict rules and formats,
as well as IT communication standards in order to maximize its value in the
forecasting process; information about standards and methods for collecting
and reporting data is provided in Chapter 4 of Part 1 of this RP.

• An effective quality control process is essential since bad data can seriously
degrade forecast performance; standard quality maintenance and control pro-
cedures have been documented and some are noted in this section

4

In any evaluation the measurements or observations are alpha and omega for trustworthy 5

results. For this reason, this section is dedicated to the importance of data collection, verifi- 6

cation and the identification of the measurement uncertainty. In the evaluation of wind power 7

forecasts, power data is most important but also meteorological measurements are often pro- 8

vided to the forecast providers as input to improve their forecast models. Furthermore, failure 9

of generation assets (unscheduled outages), service periods of generation assets (scheduled 10

outages), curtailment and other disturbances in the power measurements can have significant 11

impact on the results of an evaluation. The following section deal with these aspects and 12

provide recommendations for a correct handling of such data for the evaluation phase. 13

13
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3.1 Uncertainty of instrumentation signals and measurements1

All data are derived from different measurement devices and depending on the quality2

of these devices the measurements can deviate from the reality to a certain degree. In3

fact, measurement errors can never be avoided completely and can potentially affect the4

representativeness or significance of evaluation results. Therefore, it is crucial to establish5

and maintain specific quality requirements for the measurement devices to obtain data of6

good quality and thus keep the measurement uncertainty to a low level. This will not only7

improve the significance and representativeness of the evaluation results, but also assure an8

optimum quality of forecasts that use the measurements as input.9

For power data, themeasurement quality is usually ensured by existing grid code standards10

that are verified in the commissioning phase and are serviced as part of the turbine’s SCADA11

system maintenance.12

Recommendations on minimum technical requirements beyond the scope of this rec-13

ommended practice guideline. For anyone intending to collect and process bankable wind14

measurements, the following standards and guidelines provide a basis for the adaptation of15

those measurements for real-time operational applications :16

1. the International Electrotechnical Committee (IEC)17

2. the International Energy Agency (IEA)18

3. the International Network for Harmonised and RecognisedWind EnergyMeasurement19

(MEASNET)20

4. United States Environmental Protection Agency (EPA)21

If these requirements are fulfilled, the measurement error is usually negligible compared22

to other sources of uncertainty in the evaluation procedure.23

3.2 Measurement data reporting and collection24

Once wind farms are operational and the production data are measured it is important to25

collect, store and report them properly, which requires strict rules and formats, as well as IT26

communication standards. Standard protocols for collecting and reporting power data are27

usually enforced by jurisdictional grid codes. There are however a number of aspects that are28

not covered in the grid codes that are essential for the evaluation of forecasting tools. This29

section will discuss the main aspects to be considered for any measurement data collection30

and archiving. In the following, the description is limited for the purpose of evaluation of31

forecasts in a real-time operational framework or a forecast test framework.32
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3.2.1 Non-weather related production reductions 1

Raw power production data contains a number of non-weather related reductions that need 2

consideration in the collection or archiving of measurement data, such as 3

• failure of turbines in a wind park (availability) 4

• scheduled and non-scheduled maintenance 5

• curtailment 6

• reductions due to environmental constraints (noise, birds, ...) 7

The so-called “Net to Grid” signal is often disturbed by such technical constraints that 8

are usually not part of the wind power forecasting task. Therefore, to evaluate the actual 9

forecast quality, such events have to be filtered in the evaluation. Especially in the case of 10

curtailment, the forecast user needs to decide whether the target parameter is the real power 11

production or available power. If it is the latter, data with curtailment should be removed 12

from the evaluation data set, because errors are not meaningful for the forecast performance, 13

unless the curtailments are predicted as well. Ideally, direct signals from the turbines on 14

their available active power, even if in retrospective manor, are used to filter such data for 15

evaluation and verification purposes. 16

• To receive relevant results, remove events from the evaluation data set that are affected 17

by non-weather related production constraints unless these are to be predicted as well. 18

3.2.2 Aggregation of measurement data in time and space 19

Often, temporally or spatially aggregated data (averages, sums) are more useful in power 20

applications than instantaneous signals. The aggregation level of the data should always 21

be communicated to the forecast provider to assure optimum forecast performance for the 22

intended application. This also applies in the absence of any aggregation over time, for 23

example, it should be explicitly specified, if hourly values are provided that are not hourly 24

averages of higher resolution data, but instantaneous values taken at the start of the hour. 25

Furthermore, it is strongly recommended that the measurement data should be aggregated 26

according to the intended applications before comparing, analysing and verifying forecasts. 27

Otherwise, the evaluation results might not be relevant for the forecast user. 28

When aggregating measurement data over parks, regions, control zones or other aggrega- 29

tion levels, it is important to consider non-weather related events as discussed in Section 3.2.1. 30

In particular: 31

• Non-reporting generation units 32

• IT communication failures or corrupt signals 33
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have to be identified and reported, and the aggregated data should be normalized accordingly.1

Such failures are impossible to predict by the forecast vendor and should therefore not be2

part of the evaluation process.3

• For relevant results, average the measurement data over a time frame that is also useful4

for the intended application.5

• For representative results, non-weather related events should be identified and the6

aggregated signals normalized accordingly.7

3.3 Measurement data processing and archiving8

In any real-time environment, measurements should be delivered as is, but flagged, if they9

are considered wrong (1) at the logger level and (2) after a quality control before employing10

measurements in a forecast process.11

The optimal data archival structure is dependent on the plans for the further processing12

of the data. In most cases, it is useful to archive data in a database. There are many structures13

of databases available today. Such structural decisions are out of the scope of this guideline.14

Nevertheless, there are general considerations when planning and designing a database for15

operational data. For example, a data point may get “stuck” on a set value. Monitoring of the16

incoming data is therefore an important feature to ensure correct measurement data, where17

this is possible.18

While measurements are available only at one specific time, forecast data have overlapping19

time periods and need to be separated from measurement data. At the design level, it is20

necessary to consider the following aspects.21

1. single or multiple time points per measurement signal in database22

2. flagging at each data point and23

(a) possibility to overwrite corrupt data in database24

(b) possibility to add correct data point in database25

(c) knowledge of time averaging level of data signal26

3. single or multiple measurement points per wind farm27

4. ability to expand and upscale the database: expansion with increasing number of28

measurement points/production units29

5. importance of access to historical data30

The database dimensions and setup of tables has to take such decisions and requirements31

into consideration.32
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3.4 Quality assurance and quality control 1

Quality of data is a crucial parameter for any real-time forecasting system. If the data that 2

real-time forecasts are based on are corrupt or misleading, the result can be worse than not 3

having measurements or observations at all. Therefore, any real-time system using measure- 4

ments needs a quality control mechanism to discard bad data. However, reasons for bad, 5

corrupt or misleading data signals are almost unlimited, which means that specific limits, 6

operating ranges and validity checks need to be established when dealing with observational 7

data. Is it also worth mentioning that as well as the quality, the latency of the data, i.e. the lag 8

between live time and data being available for forecast use, is critical for live applications. 9

This will affect what time lags can practically be used in any forecast model. 10

While all this is critical in real-time environments, the quality of measurement data in the 11

verification phase is equally important. For example, if a wind power forecast is verified 12

against observations from a wind farm and a maintenance schedule or a curtailment from 13

the system operator is not filtered out or marked in the data time series, then the result may 14

be bad for the wrong reason. Trustworthiness in data can only be a result of control and 15

maintenance of both the hardware and the corresponding software and data archiving. The 16

following sections outline the most important parts of a quality control that should be carried 17

out regularly in real-time environments and prior to verification or evaluation exercises. 18

19

Key Points:
For relevant evaluation results, the data has to be of high quality, and faulty or
corrupt data has to be detected, flagged and disregarded for the evaluation process.
A detailed description of quality assurance and control processes can be found in
chapter 5 of “Meteorological and Power Data Requirements for Eeal-time Forecasting
Applications”, which is Part 4 of this Recommended Practice Series.

20





Chapter 4 1

Assessment of Forecast Performance 2

Key Points

• All performance evaluations of potential or ongoing forecast solutions have a
degree of uncertainty

• The uncertainty is associated with three attributes of the performance evalua-
tion process: (1) representativeness, (2) significance and (3) relevance

• A carefully designed and implemented evaluation process that considers the
key issues in each of these three attributes can minimize the uncertainty and
yield the most meaningful results

• A disregard of these issues is likely to lead to uncertainty and/or decisions
based on unrepresentative information

3

The relevance of different aspects of forecast performance depends on the user’s applica- 4

tion. For instance, one user may be concerned with the size of typical forecast errors, while 5

another may only be concerned with the size and frequency of particularly large errors. There 6

are a wide range of error metrics and verification methods available to forecast users, but 7

their relationship to different attributes is not always clear. This chapter deals with the issues 8

around evaluating specific attributes of forecast performance, including metric selection and 9

the verification and the use of some specific metrics in forecast optimization. 10

4.1 Forecast Attributes at Metric Selection 11

Forecast users may be interested in either a single attribute, or a range of forecast performance 12

attributes. When evaluating forecasts to either track performance changes or discriminate 13

between different forecasts, it is important to consider those attributes relevant to the forecasts 14

19
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intended use. Where a forecast is used in multiple applications, there is no guarantee that1

these attributes will be aligned and it may be necessary to compromise or procure multiple2

forecast products. Selecting an appropriate metric, or set of metrics, is a key requirement in3

order to produce an evaluation of forecast performance that is relevant to the forecast’s end4

use.5

Quantitative evaluation methods are usually the core of the evaluation framework, since6

they allow an evaluator to objectively rank different forecast solutions. Typical choices7

of quantitative metrics are the (root) mean squared error, the mean absolute error or the8

quantile score (see [10] for details) for continuous forecasts and various quantities derived9

from contingency tables for categorical or binary forecasts.10

As emphasized in Section 5.1.5, the selection of metrics should be informed by the11

forecast user’s intended use, and if a forecast is intended to be used for multiple applications,12

different basic metrics may be applied and merged into a weighted sum. Below, a range of13

forecast attributes and their relation to different evaluation metrics are discussed.14

4.1.1 Typical Error Metrics15

The most common error metrics used in renewable energy applications summarise ‘typical’16

errors by averaging the absolute value of errors, or squared errors, often normalized by17

installed capacity. Such metrics are simple to produce and give a high-level view of forecast18

performance. They give equal weighting to all errors included, which may be appropriate19

if the forecast is used to inform decisions at any time, as opposed to only when a particular20

event is predicted.21

In energy trading, for example, the forecast is used to inform decisions for every trading22

period and the cost implication of a forecast error is usually proportional to the error. In23

this case, the absolute value of the error is directly related to the forecast’s end-use, so mean24

squared error would not be as informative as mean absolute error.25

However, average error metrics hide some information which may be of interest. For26

example, a forecast with mostly small errors and occasional large errors could return a similar27

mean score to one with all moderate errors. In some cases this may not be an issue, but some28

users may prefer to experience fewer large errors even if that also means fewer small errors.29

Examples of typical error metrics are discussed in section 5.1 and especially in section30

5.1.2.31

4.1.2 Outlier/Extreme Error32

Another important attribute is the prevalence of large errors. Some applications are primarily33

sensitive to large errors, such as managing reserve energy or other risk management. Cal-34

culating metrics based on large errors is more challenging than for ‘typical’ errors, as large35

errors are more effected by specific situations. It is recommended that different root causes36

of large errors are considered separately, and that positive and negative errors are treated37

separately.38
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For example, large errors at a single wind farm during a period of high wind speed may 1

be caused by high speed shut down, but are unlikely if the wind speed is only just above 2

rated. If considering aggregated production from multiple wind farms, large errors may be 3

caused by wind speed forecast errors in the vicinity of large areas of concentrated capacity. 4

4.1.3 Empirical Error Distribution 5

The empirical distribution of past forecast errors gives a detailed picture of how frequent 6

errors of different sizes have been. It can be useful to examine the distribution of errors 7

for specific situations, such as when power was forecast to be 70±2%, as the shape of the 8

distribution will depend on power level, particularly for individual wind farms. 9

4.1.4 Binary or Multi-criteria Events 10

Some attributes of forecast performance relate to the prediction of events such as ramps (or 11

particular rate and duration) which may span multiple lead-times and spatial scales. Fur- 12

thermore, events typically have multiple attributes, such as timing and magnitude. Different 13

attributes may be of more or less interest depending on the use case for the forecast. In these 14

cases, average error metrics may not be representative of the desired forecast attribute. 15

For example, ramp rate may be of most importance to one user, whereas the timing or 16

rampmagnitudemay be ofmore importance to another. This effect is illustrated in Figure 4.1. 17

Timing or phase errors are penalized heavily by mean absolute error so the forecast which 18

best predicted both the ramp rate and magnitude appears worse by this measure. A similar 19

principal applies to events such as the duration of high or low power periods. In general, 20

average error metrics favour ‘smooth’ forecasts rather than those which capture the precise 21

shape of specific events. 22

Contingency tables provide a framework for quantifying the prediction of categorical 23

events, which can be defined to match the user’s decision making process. For example, the 24

user may define a particular ramp event with some tolerance for phase and amplitude error 25

and then evaluate the performance of a particular forecast solution at predicting such events. 26

There are four possibilities for each predicted and/or actual event: a true positive (hit), true 27

negative (correct negative), false positive (false alarm) or false negative (miss). From these, 28

a range of metrics can be calculated and used for comparison with other forecast systems. 29

Furthermore, if the cost implications of decisions based on the forecast are known (or can be 30

estimated) then the relative value of forecasting systems may be calculated. 31

Examples on how to verify outliers can be found in section 5.1, and 5.5.2.1. 32

4.2 Prediction Intervals and Predictive Distributions 33

Prediction intervals may be supplied to provide situational awareness or to information or 34

quantitative risk management. These intervals predict an upper and lower bound which the 35

observation will fall between with some probability. It is therefore an important attribute that 36
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Figure 4.1: Examples of different types of ramp forecast error. Actual power is shown as solid black lines,
forecasts are colored dashed lines. From left to right: phase or timing error, amplitude error and ramp rate error.
The mean absolute error (MAE) for each forecast is shown above the plots. Despite being the only forecast the
correctly predict the ramp rate and duration, the forecast with a phase error has the largest MAE.

observations do in fact fall between the interval with the prescribed frequency. This property1

is call ‘reliability’ and can by evaluated by simply counting the frequency of observations2

within and outside the interval. A more accurate forecasts with a narrower interval is said to3

be ‘sharp’ and provides greater confidence than a wide interval, but must be reliable in order4

to inform risk-based decision making. Therefore, prediction intervals should be evaluated5

following the principal of sharpness subject to reliability.6

A predictive distribution is a smooth probability density function for the future value.7

It provides full information about probability of all possible value ranges rather than a8

single interval. In this case the principal of sharpness subject to reliability still applies, but9

sharpness and reliability needs to be evaluated for a range of probability levels.10

In quantitative decision-making under uncertainty, the optimal decision is often a quan-11

tile, i.e. the value that is forecast to be exceeded with some probability. For example, if the12

cost of taking precautionary action is 𝐶 to protect against an uncertain adverse effect with13

potential loss 𝐿, then the precautionary action should be take in the probability of the adverse14

effect happening is greater than the cost-loss ratio 𝐶/𝐿.15

In applications of wind power forecasting, the adverse event could be exposure to im-16

balance costs, or holding insufficient energy reserves. In most cases, the values of 𝐶 and 𝐿17

will be changing continuously and the decision maker will be aiming to select a future value18

of energy production which will be achieved with some probability 𝑝 = 𝐶/𝐿. Therefore, it19

is necessary to have access to the full predictive distribution in order to make an appropri-20

ate decision. Where the cost-loss ratio is known, the relative economic value of different21

forecasting systems can be calculated.22
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4.3 Probabilistic Forecast Assessment Methods 1

Probabilistic forecast evaluation is a complex topic. There are a number of classical metrics, 2

just like for deterministic forecasts. However, the evaluation of probabilistic forecasts places 3

greater importance on an end-user’s knowledge of a cost function that provides a good 4

indication of how well the forecast performance has met the requirements of the user’s 5

application. (see 5.1.5). 6

The considerations from chapter 2 on the performance evaluation and its inherent un- 7

certainty are even more important here. The three attributes (1) representativeness, (2) 8

significance and (3) relevance are equally important to consider when setting up evaluation 9

of probabilistic forecasts. 10

In the same cases, it might be best to only use a graphical inspection of how well 11

observations lie within forecast intervals. This can then be extended to an interval evaluation 12

to provide objective values to the visual impression from the graph. This is similar to the 13

“dichotomous event evaluation” described in 5.1.3.1 for predefined events. These scores can 14

also be used for probabilistic/uncertainty forecasts, if the application is about how well the 15

probabilistic forecasts or forecast intervals have captured the observations. 16

It is therefore important to follow the recommendations in the “best practice recommen- 17

dations” 5 on how to build up an evaluation platform that reflects the purpose of the forecasts 18

and provides an incentive to the forecast provider to match these criteria with the appropriate 19

methods. 20

Therefore, the following description of metrics only provide a set of possible tools that can be 21

used for the evaluation of probabilistic forecasts and the user must select the most appropriate 22

set depending on the characteristics of the user’s application and objectives of the forecast 23

evaluation. 24

4.3.1 Brier Scores 25

The Brier score [12] is probably the most prominent and widely-used probabilistic forecast 26

performance metric. It is a useful measure for a general assessment of the performance of 27

probabilistic forecasts. However, the formulation of the basic Brier makes it suitable only for 28

the evaluation of probabilistic forecasts of binary events (i.e. occurrence or non-occurrence 29

of a defined event) 30

The Brier Score (BS) is the equivalent of the mean-squared error (MSE) for probabilistic 31

forecasts with the same limitations as for deterministic forecasts. That means, the Brier Score 32

is sensitive to the climatological frequency of events in the sense that the rarer an event, the 33

easier it is to get a good BS without having any real skill. The BS is defined as, 34

𝐵𝑆 =
1
𝑁

𝑁∑︁
𝑖=1

(𝑝𝑖 − 𝑜𝑖)2 (4.1)

where 𝑝𝑖 is the forecast probability at time i, o is the observation at time i, and N is the 35
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number of forecasts. The forecast probabilities range in value between 0 and 1, the observed1

values are either 0, if the event does not occur, or 1, if the event occurs.2

Equation 4.1 is boundmathematically to values between 0 and 1. A lower Brier score, similar3

to theMSE, indicates greater accuracy. The maximum squared error is 1, because all squared4

errors will lie between 0 and 1. A perfect accuracy is reflected in the Brier score with 0, i.e.5

there is no difference between scores of an event and someone’s probabilistic predictions for6

those events. The opposite, i.e. a Brier score of 1, reflects perfect inaccuracy, which means7

that there are probabilities of 0 given to events that occur and probabilities of 1 to events that8

do not occur.9

In order to gain further insight into the behaviour of the Brier score, it can be decomposed10

algebraically into three components:11

𝐵𝑆 = 𝐶𝐴𝐿˘−𝑅𝐸𝑆 +𝑈𝑁𝐶 (4.2)

where, the CAL is the Calibration and is also sometimes referred to as the "reliability" ,12

RES is the resolution and UNC is the uncertainty.13

In [8], these three components are explained in a way that is easy to understand and relate14

to applications:15

• CAL is a squared function of forecasted probability ( 𝑓𝑝) and the mean probability16

(𝑥𝑝) and measures whether the forecasted values consistently represent the frequencies17

with which events occur (i.e., is the forecasted probability too large or too small on18

average?). For example, does the event occur 30% of the time when a forecast of 0.3019

is issued? Specifically, CAL measures the difference between the actual frequency of20

occurrence and the forecast prediction. This is also referred to as the "reliability" of a21

probabilistic forecast.22

• RES is a squared function of (𝑥𝑝) and (𝑥) and measures how much the frequency of23

event occurrence varies among the forecasts. It measures the ability of the forecast24

to distinguish between event and non-event. For example, if the average frequency25

of event occurrence across all forecasts is 0.50, the relative frequency of occurrence26

(𝑥𝑝) should be much smaller for events, when the forecast is 0.10 (low likelihood27

of event) and much larger when the forecast probability is 0.90 (high likelihood of28

event). Higher RES scores indicate more skill and therefore appears in equation (4.1)29

with a negative sign. In the worst case, when the same probability (for example, the30

climatological probability) is always forecasted, the resolution is zero.31

• UNC is a function of (𝑥) only and does not specifically measure how well the forecasts32

predict the event. Instead, UNC is an important measure of the difficulty of the33

forecasting situation. Large values of UNC (e.g., when the event is very rare) indicate34

that the forecasting situation is more difficult. It is inappropriate to compare forecasts35

for systems with significantly different UNC values.36

In [8] a very useful list of specific questions that the Brier score answers have been listed:37
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1. Brier Score (BS) answers how accurate the probability forecasts are 1

2. Calibration (CAL) answers how well does the conditional relative frequency of occur- 2

rence of the event match a situation? 3

3. Resolution (RES) answers how well does the forecast separate events according to 4

whether they occur or don’t occur 5

4. Uncertainty UNC) answers how difficult/uncertain is the forecast situation 6

4.3.2 Ranked Probability (Skill) Score (RP(S)S) 7

The Ranked Probability Score (RPS) and Ranked probability Skill Score [13] (RPSS) is 8

widely used for multi-category probability forecasts that have a magnitude order to them 9

(such as generation forecasts). The RPS is the multi-category extension of the Brier score, 10

and the “Skill” part refers to a comparison of the RPS of a specified forecast to the RPS of a 11

reference forecast (such as climatological probabilities). 12

In other words, the RPS measures cumulative, squared error between categorical forecast 13

probabilities and the observed categorical probabilities, and the RPSS measures the error 14

relative to a reference (or standard baseline) forecast (climatology, persistence or other 15

reference forecast). The observed categorical probabilities are 100% in the observed category, 16

and 0% in all other categories [13]. 17

𝑅𝑃𝑆 =

𝑁𝑐𝑎𝑡∑︁
𝑐𝑎𝑡=1

(𝑃𝑐𝑢𝑚𝐹 (𝑐𝑎𝑡) −𝑃𝑐𝑢𝑚𝑂 (𝑐𝑎𝑡) (4.3)

Where 𝑁𝑐𝑎𝑡 = 3 for tercile forecasts. The “cum” implies that the summation is done first for 18

cat 1, then cat 1 and 2, then cat 1 and 2 and 3 [13]. 19

The higher the RPS, the poorer the forecast. RPS=0 means that the probability given to 20

the category that was observed was 100%. The RPSS is based on the RPS for the forecast 21

compared to the RPS For a reference forecast such as one that simply gives climatological 22

probabilities. 23

RPSS > 0 when RPS for actual forecast is smaller (i.e. better) than RPS for the reference 24

forecast. 25

𝑅𝑃𝑆𝑆 = 1−−
𝑅𝑃𝑆forecast

𝑅𝑃𝑆observation
(4.4)

The RPSS is made worse by three main factors [14]: 26

(1) Mean probability biases 27

(2) Conditional probability biases (including amplitude biases) 28

(3) The lack of correlation between forecast probabilities and observed outcomes 29

(1) and (2) are calibration factors and (3) involves discrimination. The tercile category 30

system can be seen as a two category system if the two tercile boundaries are considered one 31

at a time: below normal vs. not below normal above normal vs. not below normal. 32
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4.3.2.1 The Continuous Ranked Probability Skill and Energy Score1

As described above in 4.3.1, the Brier Score (BS) is useful for binary events (e.g. critical2

ramp/not critical ramp). When analysing discrete multiple-category events (e.g. below3

critical/critical/above critical ramping) the Ranked Probability Score (RPS) (see 4.3.2) is4

preferably used. In the continuous case, where there are an infinite number of predictand5

classes of infinitesimal width, the RPS is extended to the Continuous Ranked Probability6

Score (CRPS) [6]. Alternatively, it can be interpreted as the integral of the Brier score over all7

possible threshold values for the parameter under consideration. For a deterministic forecast8

system, the CRPS reduces to the mean absolute error [1].9

For an ensemble prediction system, the CRPS can be decomposed into a reliability part10

and a resolution/uncertainty part, in a way that is similar to the decomposition of the Brier11

score. The reliability part of the CRPS is closely connected to the rank histogram of the12

ensemble (see section 4.3.3.1), while the resolution/uncertainty part can be related to the13

average spread within the ensemble and the behaviour of its outliers[1].14

In [1] it is noted that the definition of CRPS makes it well suited to explain the relationship15

between the Brier Score and the usefulness of CRPS for comparisons between deterministic16

and probabilistic forecasts and is also decomposed for the use of ensemble prediction systems.17

Hersbach [1] defined the relationships in the following way:18

if we consider the parameter of interest being denoted by x. For instance, x could be the19

100-m wind speed or power output. Suppose that the forecast by an ensemble system is20

given by 𝑟 (𝑥) and that 𝑥𝑎 is the value that actually occurred. Then the continuous ranked21

probability score expressing some kind of distance between the probabilistic forecast r and22

truth 𝑥𝑎, is defined as23

𝐶𝑅𝑃𝑆 = 𝐶𝑅𝑃𝑆(𝑃,𝑥𝑎) =
∫ ∞

−∞
[𝑃(𝑥) −𝑃𝑎 (𝑥)]2 𝑑𝑥 (4.5)

Here, P and 𝑃𝑎 are cumulative distributions:24

𝑃(𝑥) =
∫ ∞

−∞
𝑃𝑦 (𝑦) 𝑑𝑦 (4.6)

and25

𝑃𝑎 (𝑥) = 𝐻 (𝑥− 𝑥𝑎), (4.7)

where is the well-known Heaviside function, defined to26

𝐻 (𝑥) =
{

0 for x < 0
1 for 𝑥 ≥ 0

(4.8)

So, 𝑃(𝑥) is the forecasted probability that 𝑥𝑎 will be smaller than x. Obviously, for any27

cumulative distribution, 𝑃(𝑥) ∈ [0,1] 𝑃(−∞) = 0, and 𝑃(∞) = 1. This is also true for28

parameters that are only defined on a subdomain of R. In that case 𝑟 (𝑥) = 0, P is constant29
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outside the domain of definition. The CRPS measures the difference between the predicted 1

and occurred cumulative distributions. 2

Its minimal value of zero is only achieved for 𝑃 = 𝑃𝑎 , that is, in the case of a perfect 3

deterministic forecast. 4

In this definition, the CRPS has the dimension of the parameter x (which enters via the 5

integration over dx). In practice the CRPS is averaged over an area and a number of cases: 6

𝐶𝑅𝑃𝑆 =
∑︁
𝑘

𝐶𝑅𝑃𝑆(𝑃𝑘 ,𝑥𝑎𝑘 ) (4.9)

where k labels the considered grid points and cases. 7

It is here, where the CRPS can be seen as the limit of a ranked probability score with an 8

infinite number of classes, each with zero width and it is not difficult to see that if 𝑘 = 𝑖 and 9

𝑝𝑘 = 𝑃𝑘 (𝑥𝑡 ) and 𝑂𝑘 = 𝑃𝑎
𝑘
(𝑥𝑡 ) the CRPS is directly connected to the Brier score by 10

𝐶𝑅𝑃𝑆 =

∫ ∞

−∞
𝐵𝑆(𝑥𝑡 ) 𝑑𝑥 (4.10)

For a deterministic forecast, that is, 𝑥 = 𝑥𝑑 without any specified uncertainty, 𝑃(𝑥) = 11

𝐻 (𝑥2 𝑥 𝑑. In that case, the integrand of Eq.4.5 is either zero or one. The non-zero 12

contributions are found in the region where 𝑃(𝑥) and 𝑃𝑎 (𝑥) differ, which is the interval 13

between 𝑥𝑑 and 𝑥𝑎 . As a result, 14

𝐶𝑅𝑃𝑆 =
∑︁
𝑘

|𝑥𝑎𝑑 − 𝑥𝑏𝑎 | (4.11)

which is the mean absolute error (MAE). 15

Although the CRPS is widely used (see e.g. [3, 5, 11]), in most real-world applications, 16

it is no longer appropriate, when assessing multivariate forecasts1. To assess probabilistic 17

forecasts of a multivariate quantity, Gneiting et al.[5] therefore proposes the use of the so 18

called “energy score”, which is a direct generalization of the CPRS 4.5, to which the energy 19

score reduces in dimension 𝑑 = 1. Gneiting and Raftery [15] showed its propriety and noted 20

a number of generalizations. If 𝑃 = 𝑃𝑒𝑛𝑠 is an ensemble forecast of size m, the evaluation 21

of the energy score is straightforward, i.e., the predictive distribution 𝑃𝑒𝑛𝑠 places point mass 22

1/m on the ensemble members 𝑥1, ...,𝑥𝑚 ∈ 𝑑 , and the “energy score” is defined as: 23

𝑒𝑠(𝑃𝑒𝑛𝑠,𝑥) =
1
𝑚

𝑚∑︁
𝑗=1

∥ 𝑥 𝑗𝑥 ∥ − 1
2𝑚2

𝑚∑︁
𝑖=1

∑︁
𝑗=1

𝑚 ∥ 𝑥𝑖 − 𝑥 𝑗 ∥ (4.12)

If 𝑃 = 𝛿𝜇 is the point measure in 𝜇 ∈ 𝑑 , that is, a deterministic forecast, the energy score 24

reduces to 25

𝑒𝑠(𝛿𝜇,𝑥) =∥ 𝜇− 𝑥 ∥ (4.13)

1A forecast is multivariate, when it consists of multiple variables, which typically refer to multiple time-steps,
multiple sites or multiple parameters
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Thus, the energy score provides a direct way of comparing deterministic forecasts,1

discrete ensemble forecasts and density forecasts using a single metric that is proper2 If such2

closed form expressions for the expectations in 4.13 are unavailable, as is often the case for3

density forecasts, it is recommended to employ Monte Carlo methods [5].4

4.3.2.2 Logarithmic and Variogram Scoring Rules5

In addition to CRPS, other recently investigated scoring rules for probabilistic forecasts in6

the energy sector are the Logarithmic Score (LogS) and Variogram Score (VarS). Details of7

these scores, examples of basic calculations and suggestions for software implementations8

can be found in Bjerregård, Møller and Madsen [11], where the authors also distinguish9

forecasting evaluation for energy systems between univariate and multivariate forecasts.10

A forecast is considered multivariate, when it consists of multiple variables, which typically11

refer to multiple time-steps, multiple sites or multiple parameters. Obviously, for multivariate12

and multi time-step forecasts the errors typically show some inertia or auto-correlation3, and13

a proper modelling of these auto-correlation is important for many applications, such as use14

of battery facilities associated with wind farms.15

Also with these more sophisticated metrics, it has become clear and can be considered a16

commonunderstanding [5, 11] that no scoring rule performs optimally in all aspects. A proper17

evaluation of multivariate forecasts is mainly of interest when the auto-correlation structure18

of the forecast is assumed to be important, i.e. a high degree of similarity between a given19

time series and a lagged version of itself over successive time intervals. Such multivariate20

forecasts can be evaluated using the VarS score [11]. However, in energy systems it is often21

crucial to havewell-calibrated univariate forecasts, and these have to be evaluated by applying22

the univariate LogS or CRPS score.23

4.3.3 Reliability Measures24

There are a number of reliability measures that measure or depict the same attribute: the25

agreement between forecasted probabilities and observed frequencies.26

The differences and similarities of the various measures, rank histogram, reliability diagrams27

and calibration diagrams are explained and discussed in the following sections, so that the28

use and benefits of combining some of these measures become clear.29

It is also worth noting that the CAL term in the Brier Score (BS) is basically a quantifi-30

cation of what is seen in these diagrams.31

2defined here according to [5]: A proper scoring rule is designed such that it does not provide any incentive
to the forecaster to digress from her true beliefs of the forecaster’s best judgement.

3representation of the degree of similarity between a given time series and a lagged version of itself over
successive time intervals
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4.3.3.1 Rank Histogram 1

Rank histograms measure the consistency and reliability and assumes that the observation is 2

statistically indistinguishable from the ensemble members. 3

The rank histograms are developed by ranking the N ensemble members from lowest to 4

highest and identifying the rank of observation with respect to the forecasts. Figure 4.3 show 5

typical distributions and their characteristics with respect to their skill. 6

Figure 4.2: One rank histograms ©[14]

Figure 4.3: Examples of a rank histograms ©[14]

It is important to note that the flat rank histogram does not necessarily indicate a skillful 7

forecast. Rank histograms show conditional/unconditional biases, but does not necessarily 8

provide a full picture of the skill, because it[14]: 9

• only measures whether the observed probability distribution is well represented by the 10

ensemble 11

• does NOT show sharpness – for example, climatological forecasts are perfectly con- 12

sistent (flat rank histogram) but not useful 13
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•1

4.3.3.2 Reliability (Calibration) Diagram2

The reliability (calibration) diagrams tell how well predicted probabilities of an event corre-3

spond to their observed frequencies and provides insight into how well calibrated a proba-4

bilistic forecast is and is a complementary metric to the Brier scores (4.3.1 and the Relative5

Operating Characteristics (ROC) curve (4.3.4).6

The reliability diagram plots the observed frequency against the forecast probability, where7

the range of forecast probabilities is divided into K bins (for example, 0-5%, 5-15%, 15-25%,8

etc.). The sample size in each bin is often included as a histogram or values beside the data9

points [16].10

The characteristics of the reliability is indicated by the proximity of the plotted curve11

to the diagonal. The deviation from the diagonal gives the conditional bias. If the curve12

lies below the line, this indicates over-forecasting (probabilities too high); points above the13

line indicate under-forecasting (probabilities too low). The flatter the curve in the reliability14

diagram, the less resolution it has. A forecast of climatology does not discriminate at all15

between events and non-events, and thus has no resolution. Points between the "no skill" line16

and the diagonal contribute positively to the Brier skill score. The frequency of forecasts17

in each probability bin (shown in the histogram) shows the sharpness of the forecast [16].18

Figure 4.4 show this principle and Figure 4.5 show typical examples of reliability diagrams19

for various forecast flaws.20

Figure 4.4: Connection between rank histograms and reliability diagrams ©[16]

The reliability diagram is conditioned on the forecasts (i.e., given that an event was21

predicted, what was the outcome?), and can be expected to give information on the real22

meaning of the forecast. It is a good partner to the ROC, which is conditioned on the23
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observations. Some users may find a reliability table (table of observed relative frequency 1

associated with each forecast probability) easier to understand than a reliability diagram. 2

Figure 4.5: Examples of reliability diagrams. The left upper and lower figure correspond to the histograms for
over- and under-dispersive distributions in Figure 4.3. ©D.Hudsen, “EnsembleVerificationMetrics” Presentation
at ECMWF Annual Seminar[14]

4.3.4 Event Discrimination Ability: Relative Operating Characteristic (ROC) 3

This metric shows a probabilistic forecast’s ability to predict the occurrence of events and 4

non-occurrence of non-events. 5

In the ROC diagram the performance of forecasts at different probability thresholds is 6

visualised. One important aspect of the ROC is that it ignores calibration of the forecasts. 7

That is, a poorly calibrated forecast will not be penalized by the ROC. Thus, it is important 8

to pair the ROC evaluation with an evaluation of forecast calibration, such as the calibration 9

diagram, which is discussed in the previous section. 10

11

The ROC is based on computing two categorical statistics (see 5.1.3.1): 12

1. the Probability of Detection (POD), Hit Rate (HR) or true positive rate (TPR) 13

2. the False Alarm Rate (FAR) or False Positive Rate (FPR) 14

The ROC curve is created by plotting the true positive rate (TPR) or the probability of 15

detection (POD) against the false positive rate (FAR) or false alarm rate (FAR) at various 16
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thresholds. The true-positive rate is also known as sensitivity, recall or probability of1

detection in machine learning. The false-positive rate is also known as probability of false2

alarm and can be calculated as (1 specificity) [17].3

Figure 4.6: Example of a “Relative Operating Curve” (ROC) curve ©Wikipedia [17]

Figure 4.6 depicts examples of ROC curves. The orange line represents a forecasting system4

with little skill, the green with moderate (better) skill and the blue line a forecasting system5

with reasonable skill.6

As shown in Figure 4.6, when the ROC curve falls below the diagonal line the forecasts are7

random classifiers, or in other words have no skill according to this metric. The blue line8

shows a good, or better forecast skill, where the curve is pushed up towards in the upper left9

corner (TPR = 1.0). The area under the ROC curve provides a useful measure of forecast10

skill[17]).11

It can also be thought of as a plot of the power as a function of the Type I Error of the12

decision rule (when the performance is calculated from just a sample of the population, it13

can be thought of as estimators of these quantities).14

The ROC curve is thus the sensitivity or recall as a function of fall-out.15

In general, if the probability distributions for both detection and false alarm are known, the16

ROC curve can be generated by plotting the cumulative distribution function (area under the17

probability distribution from −∞ to the discrimination threshold) of the detection probability18

in the y-axis versus the cumulative distribution function of the false-alarm probability on the19

x-axis[17].20

21
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4.3.5 Uncertainty in Forecasts: Rény Entropy 1

General forecast metrics such as MAE and RMSE do not measure the uncertainty of the 2

forecast and are only considered unbiased, if the error distribution is Gaussian, which is 3

seldom the case. In order to define this, and compare it with uncertainty forecasts, it is 4

recommended to use the Rény entropy, defined as the variation of wind or solar forecast 5

errors in a specified time period [8] (chapter 6). 6

The Rényi entropy is defined as: 7

𝐻𝛼 (𝑋) =
1

1−𝛼
𝑙𝑜𝑔2

𝑛∑︁
𝑖=1

𝑝𝛼
𝑖

where 𝛼 (where 𝛼 > 0 and 𝛼 ≠ 1) is the order of the Rényi entropy, which enables the 8

creation of a spectrum of Rényi entropies with 𝑝𝑖 being the probability density of the i 9

discrete section of the distribution. Large values of 𝛼 favour higher probability events, while 10

smaller values of 𝛼 weigh all instances more evenly. The value of 𝛼 is specified by the metric 11

user. 12

4.4 Metric-based Forecast Optimization 13

Once the most important attributes of a forecasting system and an evaluation metric or matrix 14

has been decided, it may be possible to optimize the forecasting system to have desirable 15

properties. Many forecasting solutions are tuned/optimized for specific performance criteria 16

either at the post-processing stage (conversion of weather forecasts to power forecasts) or even 17

in the numerical weather models themselves. For example, many statistical post-processing 18

techniques allow the user to specify whether to minimize (root) mean squared error or mean 19

absolute error. The former is implicit in ordinary lest squares, a widely used method for 20

estimating the parameters of linear models or methods that are based on maximum likelihood 21

estimation assuming Gaussian (or ‘Normally’) distributed errors. The latter has no closed 22

form solution for estimating linear models so requires the application of numerical methods 23

to solve. 24

It is recommended that the desired properties of a forecasting solution be considered 25

from the outset and communicated to those responsible for the solution’s development and 26

implementation. 27





Chapter 5 1

Best Practice Recommendations 2

Key Points
The recommendations in this section are based on the idea that the verification
framework or scoring rules chosen to evaluate forecasts shall assist end-users and
forecast providers in the determination of which aspects of the forecast should be the
focus of forecast improvement efforts. To achieve this, the following set of principles
shall be considered:

• Verification is subjective
it is important to understand the limitations of a chosen metric

• Every verification has an inherent uncertainty
due to its dependence on the evaluation data set

• Evaluation should contain a set of metrics or scoring rules (framework)
in order to measure a range of forecast performance attributes

• Evaluation should reflect a “cost function”
i.e. the metric combinations should provide an estimate of the value of the
solution

3

In this last chapter, the principles developed in the previous chapters are brought to the 4

application level. In other words, the somewhat theoretical considerations from the previous 5

chapters are now applied to real-world problems. In the second chapter 2, the concept 6

of forecast evaluation uncertainty was introduced with the three attributes “representative”, 7

“significant” and “relevant” to help minimize this type of uncertainty in the evaluation. The 8

following chapter 3, introduced the concept of measurement uncertainty with the associated 9

uncertainty in the evaluation process and how to minimize the errors in the evaluation due to 10

this type of uncertainty. In the previous chapter 4 the performance assessment was described 11

35
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in general terms and with examples that are relevant for all types of evaluation in the power1

sector.2

5.1 Developing an Evaluation framework3

Key Points
The construction of a comprehensive evaluation framework is an alternative to a
one-metric forecast evaluation approach and can be an effective way to mitigate the
"relevance" issues associated with the tuning (optimization) of forecasts to target
metrics that are not optimal indicators of value for an end user’s application.

4

The “typical forecasting task” is defined in this context as forecasts generated to fulfill5

operational obligations in electric system operation, trading and balancing of renewable6

energy in power markets. There are certainly many other tasks and applications of weather7

and power forecasts in the energy industry that can also benefit from the following best8

practice recommendations. However, the primary target for the following recommendations9

is the evaluation of forecasts for these particular applications. In this section we define the10

evaluation framework and its components and considerations. Section 5.2 deals with the11

evaluation to maximize value from operational forecasts, section 5.3 with the evaluation of12

trials and benchmarks and in the use cases section 5.5 there are example evaluations for13

energy trading and balancing, power ramps and reserve allocation.14

5.1.1 Scoring Rules for comparison of Forecast Types15

Scoring rules can be defined as summary measures in the evaluation of deterministic or16

probabilistic forecasts, by which a numerical score based on the predictive distribution and17

the event or value that materializes (i.e. the outcome) is assigned [5]. In this sense, scoring18

rules are negatively oriented penalties that a forecaster wishes to minimize and are often also19

referred to as “loss functions”.20

A scoring rule also needs to be proper which means that a forecaster maximizes the21

expected score for an observation drawn from the distribution F, if the forecaster issues22

the probabilistic forecast F, rather than 𝐺 ≠ 𝐹. In prediction problems, proper scoring23

rules encourage the forecaster to make careful assessments and to be honest. In estimation24

problems, strictly proper scoring rules provide attractive loss and utility functions that can25

be tailored to the problem at hand [15].26

In recent years, where the possibilities for more profound evaluations, also due to more27

available open source software, have become possible, a common understanding has been28

established (e.g. [5, 6, 7, 11, 15]) that no scoring rule performs optimally in all aspects. The29

end-user therefore needs to determine which aspects of the forecast should be the focus of30

forecast improvement efforts over time.31
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If there are more than one aspect to consider, or even contradicting aspects due to the 1

use of one forecast, that is used for different applications, a framework will (1) assist in 2

identifying contradicting forecast performance objectives and (2) allow giving weight to 3

different aspects of the forecast for an overall evaluation. 4

With the energy score described in section 4.3.5, it is also possible to directly compare 5

deterministic forecasts, discrete ensemble forecasts and density forecasts using a singlemetric 6

that is proper. 7

5.1.2 Analyses of Forecasts and Forecast errors 8

In this discussion, forecast errors are defined as forecast minus observation ( 𝑓 𝑐−𝑜𝑏𝑠). Errors 9

in forecasting are inevitable. The primary objective is, of course, to minimize the magnitude 10

of the error. However, a secondary objective may be to shape the error distribution in ways 11

that are beneficial to a specific application. A direct and deep analysis of the prediction errors 12

can provide considerable insight into the characteristics of forecast performance as well as 13

information that can allow users to differentiate situations in which forecasts are likely to be 14

trustworthy from those that are likely to produce large errors. 15

The construction of a frequency distribution of errors (also referred to as density functions 16

or probability density functions) is an effective way to obtain insight about forecast error 17

patterns. These are created by sorting errors and visualizing their distribution as e.g., 18

• (probability) density curve 19

• histogram (frequency bars) 20

• box plot 21

All of these chart types show the same basic information but with different degrees of detail. 22

Density curves provide the most detail since they depict the full probability density function 23

of the forecast errors. Histograms provide an intermediate level of detail by showing the 24

frequency of a specified number of error categories. Box plots condense this information 25

into several quantiles (see 5.1.3.2). Errors of a well calibrated forecast model should always 26

be scattered around zero. A frequency distribution that has a center, that is shifted from zero 27

indicates a systematic error (also known as a bias). 28

For power forecasts one will often see positively skewed error distributions, which are 29

due to the shape of the power curve which has flat parts below the cut-in wind speed and at 30

wind speeds that produce the rated power production. The skewed distribution is often the 31

result of the fact that forecasts close to zero cannot have large negative errors. The inverse 32

is true for forecasts of near rated power (i.e. large positive errors cannot occur) but forecasts 33

of rated power are often less frequent than near zero forecasts and hence have less impact on 34

the error distribution. 35
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5.1.3 Choice of Deterministic Verification methods1

There is not a single best metric that can be effectively used for all applications. The definition2

of "best metric" highly depends on the user’s intended application and should be based on3

a quantification of the sensitivity of a user’s application to forecast error. For example, if a4

user has to pay a penalty for forecast errors that are proportional to the squared error, a mean5

squared error metric is well suited for evaluation.6

However, if the penalty is proportional to the absolute error, a mean absolute error metric7

would be a better choice. If the user is interested in predictions of specific events such as8

high wind shutdown or large wind ramps, the mean squared or absolute error metrics are not9

good choices, because they do not provide any information about the ability of a forecast10

to predict these events due to their averaging characteristics. In this case, an event-based11

metric should be employed. An example of this type of metric is the critical success index12

(CSI), which measures the ratio of correct event forecasts to the total number of forecasted13

and observed events.14

5.1.3.0.1 “Loss function:” In order to get forecast performance information that is rel-15

evant for a user’s application, it is crucial to carefully select the evaluation metrics and16

ideally they should be based on the so-called “loss function” for the user’s application. The17

“loss function” is also often referred to as a “cost function”, especially when related to costs18

that can be associated with specific forecast errors. Conceptually, a well-formulated “loss”19

or “cost” function measures the sensitivity of a user’s application to forecast error. If one20

forecast is used for different applications with different loss functions, a set of metrics should21

be derived. If a single metric is desired, then a composite metric can be constructed by22

weighting the individual application-based metrics by the relative importance. More details23

on how to develop such loss functions and evaluation matrices can be found in 5.1.5 .24

5.1.3.1 Dichotomous Event Evaluation25

One may quantify desirable qualities of a forecast by considering a range of of dichotomous26

(yes/no) events, such as high-speed shut-down or ramps. A forecast might imply that "yes,27

a large ramp will happen" and trigger the user to take action, but the ability of a forecasting28

system to make such predictions is not clear from the average error metrics. Therefore, one29

should employ a quantitative verification approach to assess this ability by analysing the30

number of correct positive, false positive, correct negative and false negative predictions of31

particular events [18], [9]. Table 5.1 provides an example table to carry out such categorical32

evaluations.33

Recommendation for applications with (Extreme) Event Analyses:34

Categorical statistics that can be computed from such a yes/no contingency table. The35

list below is an excerpt of a comprehensive list of categorical statistical tests published36

by the Joint World Weather Research Program (WWRP) and Working Group Numerical37

Experimentation on Forecast Verification (WGNE) and provides the most commonly used38
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Table 5.1: Example of a dichotomous evaluation table

Observations
YES NO

YES a b
Fore- correct event forecast false alarm
cast c d

NO surprise events no events

metrics and their characteristics that are relevant for forecast applications in the power 1

industry. Details, equations and a more comprehensive explanation on the use of these as 2

well as references can be found (online) in [9]. It is recommended to apply these categorical 3

statistics in particular for applications, where standard "typical error" metrics do not provide 4

a measure of the true skill of a forecast to predict a specific event. In renewable power 5

forecasting applications this is particularly important for extreme event analysis, ramping 6

and high-speed wind turbine shutdown forecasting, etc. In such applications, it is important 7

to distinguish between quality of a forecast (the degree of agreement between the forecasted 8

and observed conditions according to some objective or subjective criteria) and value of a 9

forecast(the degree to which the forecast information helps a user to achieve an application 10

objective such as improved decision-making). Wilks [19] and Richardson [20] present 11

concepts for the value versus skill for deterministic and probabilistic forecast evaluation of 12

that type, respectively. 13

• Accuracy 14

Answers the question: Overall, what fraction of the forecasts were correct? 15

Range: 0 to 1. Perfect score: 1 16

• Bias score 17

Answers the question: How did the forecast frequency of "yes" events compare to the 18

observed frequency of "yes" events? 19

Range: 0 to 1. Perfect score: 1 20

• Probability of detection (POD) Answers the question: What fraction of the observed 21

"yes" events were correctly forecast? 22

Range: 0 to 1. Perfect score: 1 23

• False alarm ratio (FAR) 24

Answers the question: What fraction of the predicted "yes" events actually did not 25

occur (i.e., were false alarms)? 26

Range: 0 to 1. Perfect score: 0 27

• Probability of false detection (POFD) 28

Answers the question: What fraction of the observed "no" events were incorrectly 29
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forecast as "yes"?1

Range: 0 to 1. Perfect score: 02

• Success ratio3

Answers the question: What fraction of the forecast "yes" events were correctly ob-4

served?5

Range: 0 to 1. Perfect score: 16

• Relative value curve (versus skill) for deterministic forecast7

Answers the question: For a cost/loss ratio C/L for taking action based on a forecast,8

what is the relative improvement in economic value between climatological and perfect9

information? Range: -1 to 1. Perfect score: 1.10

5.1.3.2 Analysing Forecast Error Spread with Box and Wiskers Plots11

The box-and-whiskers plot is a visualization tool to analyse forecast performance in terms12

of the error spread when comparing forecasts with different attributes such as forecast time13

horizons, vendors, methodologies. Figure 5.4 shows the principle of a box and whiskers plot.14

This type of charts can be used to illustrate the spread of forecast performance in each hour15

of the day-ahead horizon can be visualized. It can also show that some forecasts in some16

hours have very low errors compared to the average error in that hour, as well as occasionally17

very high errors. In section 5.4.2, a use case for the application of box plots is demonstrated18

to verify significance of results.19

Figure 5.1: Principle of a box-and whiskers plot. The plot displays a five-number summary of a set of data,
which is the minimum, first quartile, median, third quartile, and maximum. In a box plot, a box from the first
quartile to the third quartile is drawn to indicate the interquartile range. A vertical line goes through the box at
the median.
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5.1.3.3 Visualising the error frequency distribution with histograms 1

Histograms allow one to (1) quantify the frequency of occurrence of errors below or above a 2

specified level or (2) visualise the forecast error distribution for specified error ranges. In case 3

(1) a graphical or tabular presentation can be directly used to derive a metric that indicates 4

that errors are less than x% of the installed capacity in y% of the time. In this way, histograms 5

function as a metric providing the percentage of time that errors are within a specified margin 6

[[2]]. In case (2) the error distribution of a forecast can be derived from the graphical or 7

tabular presentation of the histogram information. This enables an easy identification of 8

the frequencies of large errors and provides the possibility to analyse and possibly modify 9

the forecast system to minimize these errors. In summary, histograms visualize two main 10

attributes: 11

• Robustness of a forecast 12

• Large Errors in an error distribution 13

In Madsen et al. [2] an example can be found for the way histograms help to interpret 14

statistical results and error distributions. In their example, they directly determined that a 1 15

hour-ahead prediction contained errors less than 7.5% of the available capacity in 68% of the 16

time, while a 24 hour-ahead prediction showed errors of that size only in 24% of the time. 17

For large errors, they determined from the histogram that the same 1 hour-ahead prediction’s 18

largest errors were 17.5% of available capacity in only 3% of the time. 19

Figure 5.2 provides two example histograms with typical frequency distribution of errors 20

for a 2-hour forecast horizon (left) and a day-ahead horizon (right) as described in [2]. 21

Figure 5.2: Examples of two histograms showing typical frequency distribution of errors for a 2-hour forecast
horizon (left) and a day-ahead horizon (right).

Recommendation: If the application requires that specified error sizes should occur 22

less than a certain, specified percentage of the time, a histogram analysis should be used to 23

directly identify, whether or not a forecast’s performance fulfills the specified criteria. 24

5.1.4 Specific Probabilistic Forecast Verification 25

As in the case of the verification of deterministic forecasts, it is recommended that multiple 26

verification scores be employed for the evaluation of probabilistic forecasts. A well-chosen 27
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set of probabilistic forecast evaluation metrics will provide an indication of several key1

aspects of forecast skill, and thus provide a more comprehensive representation of forecast2

performance than a single metric.3

This also holds for recently investigated, more complex metrics such as the “Logarithmic4

Scores” (LogS) or “Variogram Scores” (VarS) (see section 4.3 and 4.3.2.2), when the so-5

called auto-correlation structure1 of multivariate2 forecasts is assumed to be important, or in6

energy systems, where it may be crucial to have well-calibrated univariate forecasts. These7

can then, for example, be evaluated by applying the univariate LogS or CRPS score to all8

the marginal densities, and depending on whether the shapes of the tails are considered9

important, a LogS could additionally be used or if not, a CRPS may additionally be more10

appropriate [11].11

In the optimal case, the verification framework or scoring rules assist users and providers in12

the determination of which aspects of forecast should be the focus of forecast improvement13

efforts.14

An evaluation of probabilistic forecasts should ideally be made of three components:15

1. a metric that measures overall quality (discrimination and calibration together), such16

as the Brier Score (BS) or Ranked Probability Score (RPS)17

2. a metric that measures discrimination alone such as the ROC18

3. a metric or chart that provides an indication of the reliability (calibration) such as the19

ranked histogram, reliability diagram or CAL component of the Brier Score.20

This combination of metrics will provide a broad perspective on forecast performance21

and also can assist in the identification of forecast performance issues. For example, when22

discrimination is good but calibration (biases) issues are degrading the overall quality, a23

reliability diagram can reveal the nature of the calibration problems [21].24

Details about how to compute or construct each of these metrics and diagrams can be25

found in section 4.3.26

5.1.5 Establishing a Cost Function or Evaluation Matrix27

Due to the complexity of the task and the fact that the objectives of forecast users are not the28

same, the following section is an introduction to the concept of a evaluation framework in29

which structured procedures for the evaluation and verification of forecasts are established.30

The structure may be shortened and adapted depending on the size of the forecasting system31

and the importance in the overall business processes.32

1representation of the degree of similarity between a given time series and a lagged version of itself over
successive time intervals

2consisting of multiple variables, which typically refer to multiple time-steps, multiple sites or multiple
parameters
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Best practice in this context is to follow a procedure, where the evaluation/verification re- 1

flects the importance of forecasts in the role of the business processes and provides incentives 2

for the forecast service provider to generate forecasts that fit the specified purpose. 3

As a minimum requirement when establishing such an evaluation framework, the follow- 4

ing set of procedures should be considered: 5

1. Definition of the forecast framework 6

It is important to exactly define the forecast applications, the key time frames and a 7

ranking of the relative importance of each application. 8

9

2. Base performance evaluation on a clearly defined set of forecasts 10

The base performance should contain "typical error" metrics in order to monitor an 11

overall performance level. 12

• time frame: minimum 3 months, ideally 1 year 13

• "typical error" metrics: nMAE, nRMSE, BIAS 14

3. Quality assessment of the evaluation sample data 15

The detection of missing or erroneous data and a clear strategy how to deal with such 16

missing data needs to be made at the outset of any evaluation period to ensure that 17

verification and forecasting is fair and transparent. 18

4. Specific Performance evaluation on a set of error metrics 19

• Visual Inspection 20

• Use of more specific metrics: 21

(a) deterministic: SDE, SDBIAS, StDev, VAR, CORR 22

(b) probabilistic: Brier Score, ROC curve, Probability Interval Forecast Evalu- 23

ation (4.3) 24

• Use of histogram or boxplot for evaluation of outliers 25

• Use of contingency tables for specific event analysis 26

• Use of improvement scores relative to a relevant reference forecast for compar- 27

isons 28

• 29

Note, details on the framework and evaluation metrics can be found in [2] and [10], 30

specific metrics and explanation of metrics can be found in [22], [23] for deterministic 31

forecasts and for probabilistic forecast metrics in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11? ]. 32

Significant tests can be found e.g. in [24]. 33
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Figure 5.3: Example of an evaluation matrix that verifies forecasts against 6 test metrics and displays the scores
for a holistic overview of the forecast performance.

5.1.5.1 Evaluation Matrix1

Establishing an evaluation matrix is complex, but can be straightforward if the principles of2

forecast uncertainty and choice of appropriate metrics are incorporated into the evaluation3

strategy.4

Best practice for the establishment is to go through the various steps outlined in section5

5.1.5 to choose the components for the evaluation framework. The core concept is to use this6

framework to define a formal structure and then add multiplication factors to weight each of7

the selected individual metrics according to their relative importance.8

The matrix can be setup in a spreadsheet environment with macros or within a database9

environment, where all data is available and metrics may even be directly computed though10

the database software. The key point of the matrix is that the forecast performance results11

can be collected, multiplied with an “importance factor”, normalised and transferred into the12

summary table to visualize the scores. For example the scores can be visualized with a bar13

chart that indicates the performance in a scale from e.g. 0 to 1 or 0 to 100 as shown in 5.3.14

Such a evaluation matrix provides important information in a comprehensive way and15

can be applied for comparisons of forecast solutions and for the analysis of the potential for16

forecast improvement.17
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5.2 Operational Forecast Value Maximization 1

Key Points

• Once operational forecasts have been established it is important to monitor the
quality of generation facility data supplied to the forecast system(s) and used
for forecast evaluation; often attention to this diminishes after a benchmark is
completed

• Ongoing “deep analysis” of forecast performance and effective provider user
communication is critical for maintaining and refining forecast performance

• Focus should be on maximizing forecast value for the application and not on
maximizing performance of standard metrics; this may include identifying or
refining the “cost” function for a user’s application and/or working with the
provider to optimize forecasts for the application(s)

• A plan should be developed to motivate and reward providers to continually
refine forecast methods and adapt new approaches from the latest research; this
may include financial incentive schemes

2

Operational forecasts should be evaluated in the context of their end-use. Different 3

use cases will have different cost functions, some of which may be complex or virtually 4

impossible to define. Organizations evaluate operational forecasts for a variety of reasons 5

and on a wide range of scales, from individual wind farms to entire fleets, and from short 6

lead times to horizons spanning several days. 7

Simple evaluation metrics such as MAE or RMSE can be used to get an overview 8

of general forecast performance and to provide an indication of forecast performance for 9

decisions with (symmetric) linear or quadratic loss functions, respectively. However, in most 10

cases, the true cost of wind power forecast errors will be more complex and depend on 11

externalities. 12

Systematic evaluation of operational forecasts is however an important business function 13

for forecast users. Whether this is monitoring the quality of the forecasts produced in-house 14

or procured from vendors, regular evaluation supports continuous improvement in forecast 15

performance and end-use. This section provides a guide to the best practices in evaluation 16

of operational forecasts. It begins by reviewing common motivations for continuous and 17

periodic evaluation of operational forecasts, and then discusses different evaluation paradigms 18

for specific use-cases. 19
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5.2.1 Performance Monitoring1

Continuous monitoring of forecast performance is best practice in order to develop an under-2

standing of forecast capability and to identify and respond to issues with raw forecast data3

or its processing. While failure of forecasting systems is extremely rare, weather models, IT4

systems, and the forecast target (e.g. individual wind farm, portfolio of wind farms, national5

wind output) are constantly evolving. This has the potential to introduce new and unforeseen6

sources of error.7

5.2.1.1 Importance of Performance Monitoring for Different Time Periods8

Short Periods (monthly): While error metrics or contingency tables calculated over short9

periods do not provide reliablemeasures of overall performance they can provide an indication10

of problems with a forecasting system and large errors should be logged and investigated.11

Abrupt changes in forecast performance can result from errors in data processing, such as12

incorrect availability information during maintenance.13

Long Periods (> 6 months): Changes in performance over longer time scales may be a14

result of changes to a supplier’s numerical weather model(s) or changes in the behaviour of15

wind power plant as they age. Slow changes may be more difficult to detect, but over time16

can accumulate significant biases which should also be investigated.17

For both cases, it is necessary to dis-aggregate forecast metrics to identify some sources18

of error. Important factors to consider when dis-aggregating errors are to include lead-time,19

time of day, power level and weather type.20

Regular reporting and tracking of forecast performance over relevant periods can help21

foster understanding of forecast capability across business functions and support staff and22

process development.23

24

Recommendation:25

• Forecasts performance should be monitored continuously to quickly identify technical26

problems27

• Large errors should be investigated and recorded for future analysis28

• Error metrics should be dis-aggregated by appropriate factors, e.g. lead-time, power29

level30

• Regular reporting for error metrics supports forecast users’ interpretation of forecast31

information32

5.2.2 Continuous improvement33

Forecast evaluation is the first stage in identifying areas for potential improvement in fore-34

casting systems. Periodically evaluating operational forecast performance and its impact35
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on wider business functions can be a valuable exercise. For example, changes in the way 1

forecasts are used, or the importance of different lead-times or variables may be a cause to 2

change the way forecasts are produced or communicated internally. 3

In situations where multiple operational forecasts are produced or supplied, regular 4

benchmarking can add value as different services are upgraded over time or exhibit different 5

performance characteristics. 6

7

Recommendation: 8

• Evaluation underpins forecast improvement and insights should be shared with both 9

forecasters and end-users 10

• Evaluation and improvement should be driven by end-use and business value 11

.. 12

13

5.2.3 Maximization of Forecast Value 14

Forecast value can be maximized by continuously monitoring and evaluating operational 15

processes of both forecasts and measurement quality. Additionally, the use of forecasts and 16

the interaction with other business processes need to be taken into consideration as well, 17

if they can impact the quality of the forecasts or the correctness and trustworthiness of the 18

evaluation. 19

The use of a single metric such as a mean absolute or root mean squared error for forecast 20

evaluation may be a way to start a process and can be helpful in identifying errors in the 21

system that can cause unwanted costs. This is a valid and useful approach. It is however 22

recommended to use such simplified methods only for monitoring purposes and not as the 23

primary verification tool (see also chapter 2, especially sections 2.2, 2.3 and 5.1). 24

Recommendation: The following aspects should be taken into consideration when identi- 25

fying a “loss function” or “cost function” in the selection process of performance metrics 26

for operational forecasts. Details on some metrics can be found in the Appendix A, a com- 27

prehensive database for metrics can be accessed online [9] together with the concepts of the 28

metrics and valuable combinations of metrics, which have also been described in more detail 29

in section 5.1. 30

• Evaluation should contain a selection of metrics: 31

– One metric alone is not indicative of overall forecast performance 32

– Use de-compositions of errors to identify the origin of errors. e.g. look at bias 33

and variance alongside MAE or RMSE. 34

– Selected metrics should reflect the costs of errors or security constraints to 35

the greatest extent possible based on the user’s knowledge of the application’s 36

characteristics 37
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– Box plots, histograms and scatter plots reveal additional important information1

compared to a "typical error" metric2

• Evaluation metric combinations can provide a representative approximation of a “cost3

function”:4

– subjective evaluation through visual inspection5

– quantitative, dichotomous (yes/no) verification of critical events such as high-6

speed shut-down or ramps with e.g. contingency tables7

– error ranges per important forecast horizon8

– error ranges per hour of day or forecast hour9

– error frequency distributions in ranges that have different costs levels10

– separation of phase errors and amplitude errors according to their impact11

– parametric tests, bootstrapping can be used to look on individual error measures12

before averaging13

5.2.4 Maintaining State-of-the-Art Performance14

If expensive long-term solutions have been established it can be challenging for an end-user15

to ensure that state-of-the-art performance is maintained. This can be due to the stiffness of16

the established IT solution (see also Part 1 of this recommended practice), but also due to17

the fact that there is no monitoring of the performance.18

19

Recommendation: It is recommended that performance monitoring takes place, where those20

forecasts that are relevant for the business processes are compared against a suitable and21

objective measure.22

The most common measures are climatology values, persistence values or comparison to23

previous periods, such as the previous calendar year. Such techniques can provide motivation24

and can be set up with a reward scheme for the forecast provider to improve forecasts with25

time and improved knowledge of the specific challenges and needs of the end-user’s forecast26

problem. (see Table 5.2)27
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Table 5.2: List of possible performance monitoring types for evaluation of operational forecasts, incentive
scheme benchmarks, tests and trials. The types are not meant to be stand-alone and may also be combined.

Performance Mea-
sure Comment/Recommendation

Improvement over
persistence

Comparison against persistence is the same as comparing “not
having a forecast” to having one. Useful measure for short-term
forecasts as a mean of evaluating the improvement of applying
forecast information to measurements. Note: be aware of data
quality issues when evaluating, especially in the case of constant
values that benefit persistence, while the forecast provides a real-
istic view.

Improvement over
past evaluation pe-
riod / forecast

If improvement is important, the comparison to a past evaluation
can be useful, especially in long-term contracts. In this way, the
forecaster is forced to continue to improve and the target is moved
with the improvements. The payment structure however needs to
incorporate the fact that improvements reduce over time and have
an upper limit.

Comparison against
set targets

If the required performance of a forecasting system can be defined,
clear targets should be set and the payment directed according to
a percentage from 0-100% of the achieved target.

Categorised error
evaluation

An effective evaluation format is categorise errors ( e.g. large,
medium and small errors) instead of setting a single error target.
If large errors pose a critical issue, then improvement on these
may be incentivized higher and vice versa. The end-user can in
that way steer the development and focus of improvements.

5.2.5 Incentivization 1

Operational forecasts may be tied to an incentive scheme by which monies are exchanged 2

based on forecast performance. Examples of such arrangements exist in both commercial 3

forecast services and regulation of monopoly businesses. As the terms of the incentive 4

scheme typically include details of how forecasts are evaluated, performing this evaluation 5

poses few risks. However, the evaluation methodology should be carefully considered when 6

negotiating or subscribing to such incentive schemes. 7

Incentives may take the form of a linear relationship between reward/penalty and a forecast 8

metric such as Mean Absolute Error, which may be normalized to installed capacity, and 9

capped at some minimum/maximum reward/penalty. Similarly, incentives may be based on 10

an event-based metric, accuracy or hit-rate for example, for specific events such as ramps or 11

within-day minimum/maximum generation. The time period over which such an incentive is 12
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calculated and settled will have a large impact on it’s volatility as evaluation metrics may vary1

greatly on short time scales. Longer timescales are conducive to a stable incentive reflective2

of actual forecast performance rather than variations in weather conditions. The basic3

evaluation rules developed in section 2 and 4 are equalyy valid here and are recommended4

to be applied.5

In summary, the recommendation is that the formulation of an incentive schemes should6

consider four factors:7

• selection of relevant target parameters (see section 2.3)8

• selection of relevant metrics (see sections 5.2,5.1, 5.1.5, 5.4.1)9

• selection of relevant verification horizons (see section 2.2)10

• exclusion principles (see chapter 3 and section 3.2 and ??)11

The selection process of relevant target parameters is highly dependent on the forecasting12

solution. The objective and proper setup of verification as well as evaluation metrics and13

frameworks can be found in 2, 4 and sections 5.1, 5.1.2, 5.3.1.14

15

Recommendation: A set of relevant target parameters needs to be defined to provide a16

focus area for the forecaster. Comparison to a previous period, to a persistence forecast or a17

set target that is realistic can circumvent a number of constraints that are difficult to exclude18

in an evaluation. The most important consideration for any performance incentive scheme19

is that the scheme should put emphasis on the development and advancement of forecast20

methods for exactly those targets that are important for the end-user’s applications.21

Table 5.2 provides a list of possible benchmark types for an incentive scheme.22

5.3 Evaluation of Benchmarks and Trials23

Key Points
In order to maximise the probability of selecting an optimal forecast solution for an
application the performance evaluation uncertainty process should be minimised and
non-performance attributes of a forecast solution should be effectively considered.
Evaluation uncertainty can be minimised by a well-designed and implemented per-
formance benchmark or trial protocol.
A benchmark should have three well-designed phases: (1) preparation, (2) execution
and (3) performance analysis that each address the key issues associated of three
primary attributes of an evaluation process.

24

As a general guideline, the evaluation of benchmarks and trials needs to follow the three25

principles of being:26

27
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1. representative 1

2. significant and repeatable 2

3. relevant, fair and transparent 3

The principles have been explained in detail in Chapter 2. In this section specific 4

considerations and the application of these principles in benchmarks and trials are provided. 5

5.3.1 Applying the 3 principles: representative, significant, relevant 6

The three key attributes of a forecast solution evaluation associated with a trial or benchmark 7

(T/B) are (1) representativeness (2) significance and (3) relevance. If any one of these are 8

not satisfactorily achieved the evaluation will not provide meaningful information to the 9

forecast solution decision process and the resources employed in the trial or benchmark will 10

effectively have been wasted. Unfortunately, it many not be obvious to the conductor of a 11

T/B or the user of the information produced by the T/B whether or not these three attributes 12

have not been achieved in the evaluation. This section will present the issues associated with 13

each attribute and provide guidance on how to maximize the likelihood that each will be 14

achieved. 15

The conductors of a T/B should consider all the factors noted in the three key areas for 16

a T/B. Part of these are described in detail in section 2 in sections 2.1, 2.2 and 2.3. The 17

following is a reminder with specifics for the T/B case: 18

1. Representativeness 19

Representativeness in this context refers to the relationship between the results of a 20

trial or benchmark evaluation and the performance that is ultimately obtained in the 21

operational use of a forecast solution. It essentially addresses the question ofwhether or 22

not the results of the evaluation are likely to be a good predictor of the actual forecast 23

performance that will be achieved for an operational application. There are many 24

factors that influence the ability of the T/B evaluation results to be a good predictor of 25

future operational performance. Four of the most crucial factors here are: 26

(a) size and composition of the evaluation sample, 27

(b) quality of the data from the forecast target sites, 28

(c) the formulation and enforcement of rules governing the submission of T/B fore- 29

casts (sometimes referred to as “fairness”), 30

(d) availability of a complete and consistent set of T/B information to all T/B partic- 31

ipants (sometimes referred to as “transparency”) 32

2. Significance (see section 2.2) For benchmarks and trials it is specifically important 33

that a result obtained now, should also be obtainable when doing a second test. Or, if 34

a test runs over 1 month, the same result should be obtainable over another randomly 35

selected month. 36
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Often, especially in short intervals, this is not possible due to the different climatic and1

specific weather conditions that characterize specific periods of a year. In this case, it2

is necessary to establish mitigating measures in order to generate results that provide3

a correct basis for the respective decision making.4

Such a mitigating measure could be to consume potentially new forecasts in real-time5

and6

(a) compare or blend them with a running system in order to test the value of such a7

new forecast8

(b) evaluate the error structure of a potential new forecast to the error structure of9

your running system10

The both tests can be relatively easy incorporated and tested against the main forecast11

product, such as a day-ahead total portfolio forecast. It will not reflect the potential12

or performance and quality of a new forecast in it’s entirety, but comparing error13

structures in form of for example error frequency distributions, ensures that a bias14

due to a lack of training or knowledge about operational specifics does not provide a15

misleading impression on quality. Chapter 4 details principles and section 5.1 provides16

details on suitable metrics.17

3. Relevance (see section 2.3) Results obtained must reflect relevance in respect to the18

associated operational task and forecasts for energy applications should follow physical19

principles and be evaluated accordingly. That means in fact that the b/t task must in20

some way reflect the future function of the forecasts. If this is not so, the results from a21

b/t should not be used to select a solution of vendor. Instead it may be used to evaluate22

other performance measures, such as service, support, delivery etc. Fairness in the23

evaluation, specific for benchmarks and trials then means that the forecast providers24

are informed about this different objective. Forecasts also need to be evaluated on25

the same input and output. If assumptions are made, these assumptions must also be26

provided in a transparent way to alll participants.27

A useful approach is to create a evaluation plan matrix that lists all of the factors noted in the28

discussion in this section and how the user’s evaluation plan addresses them.29

5.3.2 Evaluation Preparation in the Execution Phase30

The evaluation of a T/B should start in the execution phase in order to prevent errors along31

the way from making results unusable.32

Since there is usually a time constraint associated with T/B’s there are a number of aspects33

that should be considered to ensure meaningful results.34

35

.36

37
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Recommendations for the execution phase: 1

Data monitoring: 2

Measurement data and forecast delivery should be monitored and logged in order to pre- 3

vent data losses and to ensure that all relevant data is available for the evaluation. It is 4

recommended that the data monitoring should contain the following tasks: 5

• test accuracy and delivery performance for fairness and transparency 6

• monitor forecast receipt to test reliability 7

• exclude times, where forecasts are missing to prevent manipulation on performance 8

Consistent Information 9

The fourth key factor is the availability of a complete and consistent set of T/B information to 10

all participants in the T/B. Incomplete or inconsistent information distribution can occur in 11

many ways. For example, one participant may ask a question and the reply is only provided 12

to the participant who submitted the inquiry. 13

14

15

Develop and refine your own evaluation scripts: 16

Independent whether it is a first time b/t or a repeated exercise, the execution phase is the 17

time, where the following evaluation has to be planned and prepared. It is recommended 18

to verify metrics scripts or software tool and input/output structures as well as exclusion 19

principles. 20

5.3.3 Performance Analysis in the Evaluation Phase 21

The performance analysis has a number of key points that need consideration. These are: 22

1. Application-relevant accuracy measures of the forecasts 23

The key point here is that the metrics that are used in the verification must have 24

relevance for the application. For example, if a ramp forecast is tested, a mean average 25

error only provides a overall performance measure, but is not relevant for the target 26

application. If a vendor knows that performance is measured with an average, the 27

incentive would be to dampen forecasts to reduce the overall average error, which is 28

the opposite of what is required for the application to work. Such an application would 29

have to use a scoring system for hits, misses and false alarms of pre-defined ramping 30

events. 31

2. Performance in the timely delivery of forecasts 32

The key pitfalls in an T/B are often associated with the failure to closely monitor the 33

following aspects: 34

(a) Lack of check or enforcement of forecast delivery time 35

If forecast delivery is not logged or checked, it is possible for a forecast provider to 36
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deliver forecasts at a later time (perhaps overwriting a forecast that was delivered1

at the required time) and use fresher information to add skill to their forecast or2

even wait until the outcome for the forecast period is known. Although one might3

think that such explicit cheating is not likely to occur in this type of technical4

evaluation, experience has indicated that it is not that uncommon if the situation5

enables its occurrence.6

(b) Selective delivery of forecasts7

This example illustrates how the results might be manipulated with explicit8

cheating by taking advantage of loopholes in the rules. In this example the9

issue is that the B/T protocol does specify any penalty for missing a forecast10

delivery and the evaluation metrics are simply computed on whatever forecasts11

are submitted by each provider. As a forecast provider it is easy to estimate the12

“difficulty” of each forecast period and to simply not deliver any forecasts during13

periods that are likely to be difficult and therefore prone to large errors.14

This is an excellent way to improve forecast performance scores. Of course, it15

makes the results unrepresentative of what is actually needed by the user. Often16

it is good performance during the difficult forecast periods that are most valuable17

to a user.18

3. Ease of working with the forecast provider19

In a T/B support in understanding forecast results and error structures may be a good20

time to test and evaluate for the future. It should however be considered to communicate21

to the vendors, if it is a decision criteria, especially in non-refunded situations, where22

resources are used differently than in contractual relationships.23

5.3.4 Evaluation examples from a benchmark24

Figure 5.4 shows an example of a forecast evaluation using a box-and-whiskers-plot to25

visualize the spread in MAPE (mean absolute error as percentage of nominal power) of26

5 forecasts of different day-ahead time periods (each column) at two different sites. The27

distribution within each time period is shown for the 5 forecasts errors. In that way, the28

spread of forecast performance in each hour of the day-ahead horizon can be visualized. It29

also shows how some forecasts in some hours show very low errors compared to the average30

error in that hour, as well as occasionally very high errors.31

Figure 5.5 shows an example of an evaluation of errors by time of day for a fixed lead32

time of 3 hours. It illustrates a very large spread in errors during certain times of the day, as33

would be expected.34

Nevertheless, if such evaluations are compared between different forecast providers an eval-35

uation of the “most costly errors” may reveal a very different result than, if only an average36

metric per forecaster would be used.37
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Figure 5.4: Example of a box-and-whisker-plot verification at two different sites (left and right panel) for
different look ahead times (x-axis; DAx is 𝑥𝑡 ℎ hour of day-ahead forecast) and mean absolute percentage error
(MAPE; y-axis).

Figure 5.5: Example of a forecast error scatter plot by time of the day (top x-axis) for 3-hours lead times and
forecast error (y-axis)

5.4 Evaluation of Development Techniques 1

Key Points
Maintaining forecast performance at a state-of-the-art level is an important objective
for any end-user, but especially for those with complex IT infrastructure systems or
multiple suppliers of forecasts that are bound to statistically consistent forecasts over
a period of time for highest performance.
This Section outlines how analysis, diagnostics and evaluation of improvements need
to be structured in order to ensure sustained improvement over time without radi-
cal changes in existing infrastructures and the typical pitfalls associated with such
evaluations.

2
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5.4.1 Forecast Diagnostics and Improvement1

The improvement of a forecast over time is especially important in an operational environ-2

ment, where the IT infrastructure is complex and the amount of resources required to change3

a forecast service provider is high relative to the likely gain in forecast performance that4

would be produced by such a change. The following recommendations may therefore be5

applied for any of such cases, where an end-user is bound to a forecast solution.6

Improvements over time and the importance of a forecast solution being able to develop7

over time in a real-time environment is difficult to measure. Also, the improvement of8

forecasts may have a steep curve in the first years, or when constant changes in the system9

become less frequent.10

However, over time, forecast performance has a limit and the rate of improvement will be11

reduced. This needs to be taken into account as much as the ability of a forecast solution to12

develop over time to maintain a state of the art character.13

Table 5.2 is a guideline for the evaluation of forecasts and diagnostics for such improve-14

ment monitoring (see also 5.2.5).15

5.4.2 Significance Test for new developments16

Forecast vendors and researchers are always seeking for improvements and newdevelopments,17

testing and investigating new technology or techniques to add value to specific tasks in the18

forecasting arenas. Whenever a new development is ready for testing, the researchers or19

technical staff are confronted with the question, whether the new technique outperforms the20

older or current state of the art. Due to time constraints, data limitations or lack of historical21

available forecasts or measurements, this is often a difficult question to answer.22

The following example demonstrates such a typical situation and presents and outlines23

the overall considerations that need to be taken, followed by the choice of metrics and test on24

significance on the results.25

26

Initial Considerations27

A forecasting model that can take various inputs, such as online measurements in an auto-28

regressive manner, weather forecasts or other predictive features, generates power forecasts,29

which estimate the future electricity production. In order to decide which model is most30

suitable, it is necessary to evaluate its quality by comparing the forecast against power31

measurements. Typically, the errors of a separate test data are compared against each other32

in order to then decide in favour of one of the models. Which error measure is chosen should33

be individually adjusted to the corresponding application.34

The evaluation should be performed strictly on test data that were not used to calibrate35

the respective model. Otherwise, it can easily happen that models are favoored, which have36

adapted too much to the training data without being able to generalize for future unknown37

situations. If several models are compared, they should also have been jointly trained on data38

that does not originate from the test set.39
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In the case of wind power forecasts, it is furthermore essential to select the test data from 1

a continuous period. The data cannot be considered temporally independent. If one were to 2

randomly assign individual samples to a training and a test set, one would assign both sets 3

of random samples that share a large part of the information. As a result, preference would 4

also be given to models that are over-adapted to the training data. 5

6

In addition to the error measure, other aspects can also play a role. For example, one 7

is faced with the question whether an established model should be replaced. For several 8

reasons it may seem attractive not to replace it even though another one shows a smaller 9

error. For instance, because confidence in the model functionality has been built up, or 10

because a change in the model requires additional effort. Such or similar cases make it nec- 11

essary to examine the significance of the estimated error values. The critical question behind 12

this iswhether the extent of the test data considered is sufficient to form the basis for a decision. 13

14

Evaluation of Significance 15

One way to evaluate the significance of the error values is to evaluate the distribution of 16

the error measures of a model across different locations. In the following, the relevant 17

aspects of the results of the study in [24] are summarized. It compared different machine 18

learning models to weather forecasting and real-time measurement based forecasting. The 19

box plot shown in Figure 5.6 shows the distribution of the error measures of 29 wind farms in 20

northern Germany. The error measure used here is the root mean square error (RMSE) which 21

is applied to nominal power normalized time series. The individual boxes represent the error 22

distribution of one of the six models used. The triangular markers indicate the confidence 23

range of the median. If these ranges do not overlap for two models, the medians are different 24

under normal distribution assumption to a 5% significance level. This corresponds to a visual 25

representation of a t-test. 26

Figure 5.6: RMSE distribution for six different forecasting models forecasting for 29 wind farms in the North of
Germany (left figure). Pairwise differences RMSE for each single model in comparison to the wind farm RMSE
of the reference model ELM (CV-Ensemble) [24] (right figure).

Figure 5.6 (left) shows, that only the power curve model has a significantly higher RMSE. 27

All others cannot be clearly distinguished. The reason for this can be found in the broad 28
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distribution. This can be explained to a greater extent by the different local properties, such1

as the number of turbines per wind farm or the local orography. When considering the paired2

differences, local influences can be partially eliminated.3

4

Figure 5.6 (right) shows the distribution of the difference between amodel and a reference5

model (ELM (CV-Ensemble)) across all 29 wind farms. If the distribution of a model is6

significantly in the positive range, it can be assumed that the reference model is significantly7

better. Thanks to these pairwise differences, it can now be established that two other models8

have a significantly worse result.9

5.5 Use cases10

Key Points
The section presents a number of use cases that illustrate how an evaluation in a
specific part of the power and energy sector should ideally be designed and executed.
In the Energy Trading and Balancing, ramping forecast in general and for reserve
allocation, forecasts are a crucial part of the processes for balance-responsible parties
as well as system operators. And yet, many mistakes are made in the evaluation and
incentivization of forecasts that effectively often lead to results that are unsatisfactory
and create mistrust in the ability of forecast service providers to have skills to provide
useful forecasts.

11

5.5.1 Energy Trading and Balancing12

In energy trading, forecasts of multiple variables are used in order to provide situational13

awareness and support quantitative decision-making. Costs accrue on the basis of forecasts14

and energy prices at multiple look-ahead times. An example is forecasts used at the day-ahead15

stage and then again at an intra-day look-ahead time frame for the same trading period, and16

the relative price of buying and selling energy at different times.17

Furthermore, prices, particularly imbalance prices, may be influenced by the cumulative18

forecasts and forecast errors of all market participants creating dependency between wind19

power forecast errors and the price at which resulting imbalances are settled. Similarly,20

unrelated events may cause large price movements that result in an otherwise unremarkable21

forecast error having a large financial impact. Therefore, care must be taken when designing22

an evaluation scheme that is reflective of forecast performance and not externalities.23

5.5.1.1 Forecast error cost functions24

If trading decisions are based on a deterministic power production forecast, it is tempting to25

try and evaluate the ‘cost’ of forecast errors based on energy prices.26

27
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For example by taking the cost of under forecasting to be equal to the difference between the 1

day-ahead price and the system sell price (the opportunity cost of having to sell at the system 2

sell price rather than day-ahead price), and taking the cost of under forecasting to be equal 3

to the difference between the system buy price and the day-ahead price (the cost of having to 4

buy back the energy not produced at a higher price than it was sold for). 5

6

This approach has several problems: 7

1. price asymmetry: 8

Traders are aware of the asymmetry in imbalance prices and have a view of whether 9

the market is likely to be long or short, as such they do not naively trade the forecast 10

production and will hedge against penalizing prices. It is therefore not representative 11

to assume the day-ahead forecast is contracted. 12

2. adjustment opportunities: 13

The intra-day market and flexibility within the traders portfolio provide opportunities 14

for adjustment between the day-ahead market and imbalance settlement which may 15

influence both the value and volume of traded energy, and potentially the imbalance 16

price. 17

3. forecast error correlation: 18

Renewable power forecast errors are often highly correlated across the entire market 19

and therefore to the market length and total imbalance. As a result, evaluating forecast 20

errors based on imbalance cost will not discriminate between forecast performance 21

and correlation with imbalance prices and one may incorrectly interpret reduced ‘cost’ 22

as improved forecast skill. 23

For these reasons it is recommended that (normalized)mean absolute error be used as part 24

of an evaluation matrix of other relevant metrics when evaluating deterministic renewable 25

power forecast performance for trading applications (see 4, 5.1). Additionally, a real-example 26

of a market analysis and evaluation of how different trading strategies influence tne costs in 27

comparison to the revenue can be studied at [25], and [26]. 28

29

If trading decisions are based on probabilistic power production forecasts those forecasts 30

should be evaluated as described in section 4.2. If probabilistic forecasts of both power 31

production and prices are used, it is important that the dependency structure between power 32

and price forecast errors is correct. Various metrics exists to measure this, such as the 33

multivariate energy score [5] and 𝑝-variogram score [11, 27]. Details are beyond the scope 34

of this document. 35

5.5.2 General Ramping Forecasts 36

Power ramps can have significant impact on power system and electricity market operation 37

and are of interest to decision-makers in both domains. However, as ramps comprise a 38
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sequence of two or more forecasts, metrics that only compare predictions and observations at1

single time points are not suitable for evaluating ramp forecasts. Event-based evaluation in2

the form of contingency tables and associated metrics provide a tool-set for evaluating these3

forecasts.4

Once an event is defined, such as ramp defined as a particular change in wind energy5

production over a particular time period, occurrences in forecasts and observations can be6

labeled and a table of true-positive, false-positive, true-negative and false-negative forecasts7

can be produced. From this, the skill of the forecast at predicting such events can be evaluated.8

The definition of a ramp will influence the forecast tuning and evaluation results. It is9

recommended that the definition reflects the decision(s) being influenced by the forecast. For10

example, this could be related to a commercial ramp product definition, or the ramp rates of11

thermal power plant used in balancing. Furthermore, if an economic cost can be assigned to12

each outcome, then the forecasting system can be tuned to minimize costs, and the relative13

value of different forecasting systems can be compared.14

In general terms, the following methods and metrics are recommended as basis for the15

evaluation of ramp forecasts:16

• Contingency tables and statistics derived from the tables provide an evaluation frame-17

work18

• Ramp definitions should reflect operational decision-making19

• The cost implications of different types of errors should be considered when comparing20

different forecasting systems21

In the next sections, a number of examples are described to demonstrate how evaluation22

should be planned and that illustrates the pitfalls in the metric selection process.23

5.5.2.1 Amplitude versus Phase24

Ramping events cause shortage or overproduction and risk for congestion in the power system25

for relatively short time frames. For this reason, many system operators have different levels26

of reserve time frames and also forecasting time frames that provide the possibility to allocate27

different types of reserve to counteract ramps that have been forecasted insufficiently strong28

(amplitude) and/or are wrong in phase. On system operator level it is often described that29

the amplitude is more important than the exact timing (phase).30

In this case, it is necessary that the evaluation method does not punish the forecaster31

stronger for a phase error than an amplitude error. This means for example that using a32

root mean square error to evaluate ramps is incentivizing a forecaster to dampen amplitudes33

and optimize on phase. Sometimes it is referred to the “forecaster’s dilemma” when the34

end-user defines a metric for evaluation such that the target is opposite of what the end-user35

asks for and needs. The forecast provider then either tunes forecasts to the metric or to what36
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the end-user likes to see and risks to be punished (e.g. loose a contract), when evaluated. 1

See also [28]. 2

Recommendation: When a forecaster should be incentivized for amplitude in a ramp 3

forecast, the evaluation metric cannot be an average error measure such as mean absolute 4

error or root mean square error. If these average error metrics are used, the data to be 5

evaluated has to be prepared to: 6

• reflect only cases that contain ramps of a certain strength 7

• widen ramp events with a forward/backward window of 1−2 hours to allow for phase 8

errors 9

Additionally, either a contingency test with hit rate, misses and false alarms have to be used 10

in the evaluation of the forecasts to reflect the focus on amplitude. 11

5.5.2.2 Costs of false alarms 12

Ramps can have different costs in a power system. In some systems, too fast up-ramping 13

causes congestion or in some way over-production that needs to be dealt with (case 1). The 14

opposite case, the down-ramping can cause that there is power missing on the grid that is 15

not available and the fast primary reserve causes high costs (case 2). In case 1, the system 16

operator has to be able to reduce ramping capacity of the wind farms or have other highly 17

flexible resources on the grid to level out the overproduction. In case 2, lacking energy can 18

cause high costs for fast ramping resources on primary reserve level or outages, which are 19

unwanted. 20

The consequence is that the cost profile for up-ramping and down-ramping is usually 21

different. Also, the cost of not forecasting a ramp that occurs (false-negative) can be 22

significantly higher than the cost of preparing for a ramp, which does not occur (false- 23

positive). The only way to verify, whether a forecast is sufficiently good in predicting a 24

specific type of ramping event is to use contingency tables, where the forecast skill can be 25

computed and visualised. 26

5.5.3 Evaluation of probabilistic Ramp forecasts for Reserve Allocation 27

The primary scope of reserve predictions is to reduce balancing costs via dynamic allocation 28

of reserve and if possible with the help of non-fossil fuel capacity. 29

If a system operator (SO) or balance responsible party (BRP) can more dynamically schedule 30

reserve, the costs for imbalances become lower and the energy system more efficient. 31

This was the scope of a study that will be presented as an example of the evaluation of 32

a real-time environment application that needed a practical solution in order to reduce costs 33

for reserve allocation for the end-user [29]. The evaluation strategy and results of the study 34

can be considered a kind of guideline on how to best manage renewable energy imbalances 35

in a market system. 36
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In this sample control area there are approximately 40 wind farms. The permanent1

allocation of reserves for the control area amounted at the outset to +/-10% and up to +/- 30%2

of installed capacity of wind, dependent on the time of the year, i.e. there are large seasonal3

reserve allocation differences. In our example area the wind generation is correlated and4

strong ramps occur. However, it is seldom to observe that the wind generation ramps down5

in a dramatic speed. Ramp-ups are faster than down-ramps and it is very unlikely that an6

instant total wind ramp down to zero can occur in the control area.7

5.5.3.1 Definition of Error Conditions for the Forecast8

Fundamental for forecasting is that a criteria for success and error can be defined. Given the9

fact that certain swings in the data are unrealistic or possibly so extreme that the operational10

cost of self-balancing would be too high, there was a need to work with probabilities. One11

way of doing this is to define that, if a forecast value lies within a band, the result is a success12

and if it lies outside the band, it is a false alarm. A constant very wide reserve band would13

imply 100% success, but would not be affordable.14

The gain lies in finding a balanced criterion considering the following questions:15

• How many failures can be tolerated ?16

• What is the allowed maximum error ?17

• Which frequency of reserve under-prediction is allowed ?18

• What is the cost of spilled reserve ?19

These questions are related or determined by the SO’s operational experience and stan-20

dards to which the SO must be conforming. Figure 5.7 illustrates the challenges of deciding21

how many outliers can be accepted to reduce costly spill, a dilemma every balance respon-22

sible party has to deal with. The static allocation of reserves is very expensive, especially if23

all extremes should be covered. Even, if extremes are not covered always, there is a lot of24

spill (black areas in Figure 5.7) in comparison to a dynamic allocation of reserves.25

The difficulty for such a situation is to find objective criteria suitable for evaluation of a26

model result, which relates to operation and presents incentives for the forecaster to reduce27

the spill by maximizing coverage of extremes. Standard statistical metrics do not provide28

answers to this optimization task, because (1) it is not the error of 1 forecast any more and (2)29

the target is whether the allocation was sufficient and cheaper than allocating with a constant30

“security band”.31

With contingency statistics it is possible to ask the right questions:32

33

Hits and Misses Analysis show the percentage of time the band was too small
Positive and negative reserve allocation can be split up to reflect use of tertiary reserve
allocation (cheaper) instead of primary reserve (high expenses)

34

35

The following analysis was carried out to reflect these objectives:36
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Figure 5.7: Illustration of the “reserve allocation dilemma” of costly spill versus covering all possible ramping
events. Here, 𝑅𝑝𝑜𝑠 is the dynamic positive reserve, 𝑅𝑛𝑒𝑔 is the dynamic negative Reserve, the upper linear
borders 𝑅𝑝𝑜𝑠 and 𝑅𝑛𝑒𝑔 are the static reserve allocation, the black area and the outer light grey areas are the spill
for the dynamic and static allocation of reserves, respectively.

Table 5.3: Appliedmetrics in the evaluationmatrix for the reserve allocation example in [29]. The input forecasts
are split up in 9 percentile bands from P10..P90 and a minimum and maximum.

Metrics Purpose Input forecasts
BIAS average to gain overview MIN
MAE average to gain overview P10
RMSE average to gain overview P20
Inside Band consistency forecast-deployment P30
𝑅𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 forecasted reserve deployment P40
Hit rate Total achievable percent of activated reserve P50

𝑅𝑝𝑜𝑠 as above for pos reserve P60
𝑅𝑛𝑒𝑔 as above for neg. reserve P70

Misses Total avg under-predicted reserve P80
𝑅𝑝𝑜𝑠 as above for pos reserve P90
𝑅𝑛𝑒𝑔 as above for neg. reserve MAX

Spill Total avg over-predicted reserve
𝑅𝑝𝑜𝑠 as above for pos reserve
𝑅𝑛𝑒𝑔 as above for neg reserve

1. A BIAS, MAE and RMSE provide an overview of the plain statistical capabilities of 1

the various forecasts 2
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2. Contingency tables for hit rate, misses, spill and reserve coverage have been computed1

to provide metrics for further optimization of the task2

Table 5.3 shows the evaluation matrix of metrics and their purpose in the verification3

and further optimisation. The study [29] concluded that the real reserve deployment will not4

be able to cover the shortage or overcapacity for about two hours per day in average. Their5

5760 hours of evaluation was not considered very robust to draw final conclusions and to6

set long-term strategies, it was found that the results provided the information necessary to7

enhance the optimisation task and follow it’s progress closely over some time.8
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Commonly applied standard statistical metrics

Mean Absolute Error (MAE): The average of all absolute errors for each forecast interval.   
Measures the average accuracy of forecasts without considering error direction.

 

Mean Absolute Percent Error (MAPE): This is the same as MAE except it is normalized by 
the capacity of the facility.

Root Mean Square Error (RMSE): Measures the average accuracy of forecasts without 
considering error direction and gives a relatively high weight to large errors

Root Mean Square Percent Error (RMSPE): As above normalize by plant capacity.

BIAS: Indicates whether the model is systematically under- or over-forecasting

Correlation: Correlation is a statistical technique that is used to measure and describe the 
STRENGTH and DIRECTION of the relationship between two variables.

r ( x , y )=
COV ( x , y )
STD x ⋅ STD y

=
∑ ( x− x̄ ) ⋅ ( y− ȳ )
N ⋅STD x ⋅ STDy

where f are the forecasted values, m are the measurements, COV is the covariance, STD is the 
standard deviation.

Standard Deviation: A measure of the spread or dispersion of a set of data. The more widely 
the values are spread out, the larger the standard deviation. It is calculated by taking the 
square root of the variance. 

STD=√(∑ (( f i− f̄ i )
2 )

n )
Variance: A measure of the average distance between each data point and the data mean 
value; equal to the sum of the squares of the difference between each point value and the data 
mean. 

σ2=
∑ ( ( f i− f̄ i )

2)
n

1
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