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Abstract 

Accurate solar photovoltaic (PV) power forecasting allows utilities to reliably utilize solar resources on their systems. 
However, to truly measure the improvements that any new solar forecasting methods provide, it is important to develop a 
methodology for determining baseline and target values for the accuracy of solar forecasting at different spatial and temporal 
scales. This paper aims at developing a framework to derive baseline and target values for a suite of generally applicable, 
value-based, and custom-designed solar forecasting metrics. The work was informed by close collaboration with utility and 
independent system operator partners. The baseline values are established based on state-of-the-art numerical weather 
prediction models and persistence models in combination with a radiative transfer model. The target values are determined 
based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of PV power output. The 
proposed reserve-based methodology is a reasonable and practical approach that can be used to assess the economic benefits 
gained from improvements in accuracy of solar forecasting. The financial baseline and targets can be translated back to 
forecasting accuracy metrics and requirements, which will guide research on solar forecasting improvements towards the 
areas that are most beneficial to power systems operations. 
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1. Introduction 

The penetration of solar power in the electric grid is steadily rising. For instance, the USA SunShot Vision 
Study reported that solar power could provide as much as 14% of U.S. electricity demand by 2030 and 27% by 
2050 (Margolis et al., 2012). The increasing penetration of solar power has presented new challenges for the 
reliable and economic operation of the power grid because of the high variability and uncertainty of solar PV 
power production (Lave and Kleissl, 2010; Lew et al., 2010). At high levels of solar energy penetration, solar 
forecasting will become imperative for reliable electricity system operation because it helps to reduce the 
uncertainty associated with matching power generation to load demands. 

1.1. Baseline of Solar Forecasting 

To properly measure improvements that any new solar forecasting method can provide, it is important to first 
assess the state of the art in solar forecasting. A number of papers in the literature present global horizontal 
irradiance (GHI) forecast models for day-ahead and other similar timescale forecasts. Generally, a baseline 
model is used for comparison, which is selected from: (i) persistence models (Diagne et al., 2013; IEA, 2013; 
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Inman et al., 2013); (ii) numerical weather prediction (NWP) models without bias correction (Perez et al., 2010; 
2013); and (iii) NWP models with bias correction (Lorenz et al., 2009; Mathiesen and Kleissl, 2011). Most of 
the literature includes a comparison to persistence models in which the forecast 24 hours (or 48 hours, etc.) 
ahead is set to the measurement of irradiance from the day (or two, etc.) before. Even when comparing multiple 
models for different geographic locations to additional baselines, the persistence model is generally included as a 
reference. It is expected that certain models have higher accuracy at different geographic locations. Therefore, 
multiple locations have to be considered in order to provide a fair overview of the accuracy of a proposed model. 

Relatively fewer papers in the literature present day-ahead baseline forecasts (or similar timescales) for solar 
power predictions; however, the approaches to solar power forecasting baselines seem to be similar to those for 
irradiance forecasts. Baseline models include (i) persistence models that set the day-ahead forecasted PV power 
equal to the measured PV power 24 hours before that time (Lorenz et al., 2011; Lorenz et al., 2012; Paulescu et 
al., 2013); (ii) NWP + plane of array (POA) irradiance calculation + PV models (Lorenz et al., 2011; Lorenz et 
al., 2012; Paulescu et al., 2013); and (iii) NWP with bias correction + POA irradiance calculation + PV models 
(Lorenz et al., 2011; Lorenz et al., 2012; Paulescu et al., 2013). Baselines in the different PV power predictions 
for day-ahead forecasts almost always include a persistence model. They may also utilize one or more of the 
NWP forecast models. NWP forecasts (with or without bias correction) are used to calculate POA irradiance 
using standard formulae (Duffie and Beckman, 2006; Erbs et al., 1982). The POA irradiance is the input to PV 
models that are able to compute the forecasted DC power and the AC forecasted power when multiplied by 
derating efficiency inverter curves. In addition, approaches such as PVWatts (Marion et al., 2001) (which 
linearly relates the irradiance to PV power) or PV-Lib (Stein, 2012) (which uses the King models (King et al., 
2004)) are used to calculate the PV power. The baseline PV models normally include temperature corrections, 
but often do not include other advanced corrections, such as for wind, elevation, or low incident angles. 

1.2. Research Motivation and Objectives 

The development of baseline and target values for solar forecasting is closely related to the objective of 
quantifying the economic benefit of solar forecasting, around which currently the industry has no consensus. 
This is not only because of the complicated hierarchy and structure of the electrical energy market, but also 
because of the lack of in-depth understanding about how forecast information may fit into the specific utility or 
ISO operational practices, which are often complex and unique to each organization. Our development of 
baseline values and target economic metrics for quantifying the benefits of the solar forecast system has been 
based on close collaboration with utility and ISO partners.  

Target values for the solar forecasting technology will help establish the goals for improvements in solar PV 
power forecasting. Different design objectives and strategies are used in power system operations, depending on 
the various timescales of the forecast to ensure economic operations and reliability; thus, it is important to 
characterize solar forecasting at all timescales of interest. Major customers of solar forecasting technologies 
include utility companies, independent system operators (ISOs), distribution system operators, etc. As solar 
penetration levels increase, solar forecasting will become more important to solar energy producers and solar 
power plant developers. Therefore, baseline and target values should be made for different geographic and 
energy-market regions to evaluate the versatility of the technology. 

The objective of this paper is to present a procedure to determine the baseline and target values for solar PV 
power forecasting metrics. A suite of generally applicable, value-based, and custom-designed metrics were 
adopted for evaluating solar forecasting for different scenarios. It is important to note this study focuses on 
the forecasting of GHI and solar PV power. Section 2 presents the methodology for determining baseline and 
target values. Section 3 discusses the results of point and region solar forecasting case studies. Concluding 
remarks and future work are given in the final section. 

2. Methodology for Determining Baseline and Target Metrics Values of Solar Forecasting 

Operations of power systems occur at different timescales that can be summarized, from longest to shortest, 
as unit commitment, load-following, economic dispatch, and regulation (Ela et al. 2011). Figure 1 shows a 
general power system load pattern for a single day. Unit commitment and scheduling are performed throughout 
the day to economically commit the units in the system to meet the general system load pattern of the day. 
During shorter periods of time (minutes to hours), the system redispatches its units (and sometimes starts and 
stops quick-start units) to counteract deviations from the schedule through load following. Regulation is the 
balancing of fast second-to-second and minute-to-minute random variations in load or generation (Ela et al. 
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2011). These strategies represent the balancing during normal conditions of the power system. The 
forecasts of load and renewable are never 100% accurate and different types of reserves are used to help 
mitigate the effects of forecast errors. Typical ancillary service markets are spinning contingency reserve, 
non-spinning contingency reserve, and regulating reserve. Variable generation such as wind and solar 
can increase the requirements for normal balancing reserve, such as regulating reserve, which can 
increase the prices for those services. Improved solar forecasting is expected to help reduce the reserve 
requirement. In general, nuclear, biomass, and coal power plants are committed in the day-ahead (DA) 
market, while combined and steam turbines are committed in the 4-hour-ahead (4HA) market. Improved 
short-term solar forecasts allow operators make better DA market operation and unit commitment 
decisions, help real-time operations in the hour ahead, and inform operators about extreme events. To 
understand the impact of solar forecasts on solar power integration, it is important to characterize solar forecast 
errors at all timescales of interest. One of the objectives of this study is to determine the baseline and target solar 
forecasting metrics over a number of different timescales. Four solar forecast horizons are investigated: DA 
forecasts, 4HA forecasts, 1-hour-ahead (1HA) forecasts, and 15-minute-ahead (15MA) forecasts. 

 
Figure 1. Power system operation timescales (Modified from Ela et al., 2011) 

2.1. Metrics for Assessing Solar Forecasting  

A suite of generally applicable, value-based, and custom-designed metrics for solar forecasting for a 
comprehensive set of scenarios (different time horizons, geographic locations, applications, etc.) were 
developed in previous work by the authors (Zhang et al., 2015). The proposed solar forecasting metrics can be 
broadly divided into four categories: (i) statistical metrics for different time and geographic scales; (ii) 
uncertainty quantification and propagation metrics, (iii) ramp characterization metrics; and (iv) economic 
metrics. A brief description of the metrics is given in Table 1, and detailed information about each metric can be 
found in (Zhang et al., 2015). A smaller value indicates a better forecast for most of the metrics, except for 
Pearson’s correlation coefficient, skewness, kurtosis, distribution of forecast errors, and swinging door 
algorithm. 

Table 1. Proposed metrics for solar power forecasting (Zhang et al., 2015) 
Type Metric Description/Comment 

Statistical Metrics 

Distribution of forecast errors 
Provides a visualization of the full range of forecast errors and 
variability of solar forecasts at multiple temporal and spatial scales 

Pearson’s Correlation coefficient Linear correlation between forecasted and actual solar power 

Root mean square error (RMSE) and 
normalized root mean square error  
(NRMSE) 

Suitable for evaluating the overall accuracy of the forecasts while 
penalizing large forecast errors in a square order 
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Root mean quartic error (RMQE) and 
normalized root mean quartic error 
(NRMQE) 

Suitable for evaluating the overall accuracy of the forecasts while 
penalizing large forecast errors in a quartic order 

Maximum absolute error  (MaxAE) Suitable for evaluating the largest forecast error 
Mean absolute error (MAE) and mean 
absolute percentage error (MAPE) 

Suitable for evaluating uniform forecast errors 

Mean bias error (MBE) Suitable for assessing forecast bias 
Kolmogorov–Smirnov test integral (KSI) 
or KSIPer 

Evaluates the statistical similarity between the forecasted and actual 
solar power 

OVER or OVERPer 
Characterizes the statistical similarity between the forecasted and 
actual solar power on large forecast errors 

Skewness  
Measures the asymmetry of the distribution of forecast errors; a 
positive (or negative) skewness leads to an over-forecasting (or 
under-forecasting) tail 

Excess kurtosis 
Measures the magnitude of the peak of the distribution of forecast 
errors; a positive (or negative) kurtosis value indicates a peaked (or 
flat) distribution, greater or less than that of the normal distribution 

Uncertainty 
Quantification 

Metrics 

Rényi entropy 
Quantifies the uncertainty of a forecast; it can utilize all of the 
information present in the forecast error distributions 

Standard deviation Quantifies the uncertainty of a forecast 
Ramp 

Characterization  
Swinging door algorithm 

Extracts ramps in solar power output by identifying the start and end 
points of each ramp 

Economic Metrics 95th percentile of forecast errors 
Represents the amount of non-spinning reserves service held to 
compensate for solar power forecast errors 

2.2. Methodology for Determining Baseline Metrics Values 

From the temporal point of view, the simplest approach to estimate forecasting baselines is that of 
climatology. The climatology approach consists of using a constant long-term average value throughout the 
entire forecasting period; the average value is often used as a benchmark for the forecasting skill with minimal 
effort. However, we consider that the solar forecasting sector has surpassed this benchmark, and a better 
baseline approach is needed.  

Instead, we decided to use two other fundamental forecasting approaches: the model and the persistence 
approaches. The model approach corresponds to the use of products from NWP models, which rarely achieve 
useful skill at lead times smaller than a few hours because of the (spin-up) period they require to achieve 
numerical stability. The persistence approach (more specifically, Eulerian persistence) corresponds to using the 
persistence of the recent observations. This shows superior skill in the shorter forecasting periods and when 
atmospheric variability is smaller (e.g., dry climates, few clouds). Specifically, the persistence forecasts show 
better skill than the model forecasts in the short term, whereas the model forecasts show better skill (than the 
persistence) after a few hours in the forecasting period (Germann et al., 2006). Other than NWPs, sky camera 
and geostationary satellite image analyses are also employed for short term forecasting (Chu et al. 2014; 
Marquez et al. 2013; Lorenz et al. 2012; Lorenz et al. 2014; Perez et al. 2010). Though accurate, such 
methods are sophisticated and often require proprietary data sources, which make them difficult to 
reproduce independently and thus impractical for the purposes of establishing baselines.  

Given the aforementioned considerations, the overall methodology for establishing baseline values is to 
use the persistence approach for 0- to 4-hour lead time, and to use the model approach for day-ahead lead 
time as summarized in Table 2. The establishment of baseline values for day-ahead forecasting for each of the 
metrics is based on a state-of-the-art weather model, specifically the North American Mesoscale Forecast 
System (NAM) (Mesinger et al., 2006), in combination with a streamer radiative transfer model (RTM) and the 
PV-Lib toolbox (Stein, 2012) for irradiance-to-power modeling. The NAM model was chosen as this work is 
focused on baseline and target values for solar forecasting within the US. Without losing generality, the 
methodology presented may be applied outside North America by replacing the NAM model with a local 
NWP model or a global model such as the Global Forecast System (GFS), whichever is the best available 
for the region of interest (Lara-Fanego et al. 2012; Perez et al. 2013). To remove substantial bias errors of 
day-ahead forecasts, a first order machine learning (linear regression model) model is applied based on the 3-
day historical data. A modified persistence model is adopted for the 15MA, 1HA, and 4HA forecasts. In the 
following, we describe in detail the protocols for deriving the day-ahead baseline from numerical weather 
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prediction and hours-ahead baseline from persistence. 

Table 2. Overall approach to determining baseline forecasts at different forecast horizons 
Forecast Horizon Weather Information Irradiance Forecasts Power Forecasts 

15-min-ahead (15MA), 1-hour-ahaed 
(1HA), and 4-hour-ahead (4HA) Persistence Streamer RTM Persistence of cloudiness 

Day-ahead 
(0-23 hours ahead and 24-47 hours ahead) NAM Streamer RTM 

(1) PV-Lib + linear regression; or 
(2) linear least square fit (if no PV 

specifications available) 

2.2.1. Numerical weather predictions for DA solar forecasting 
This day-ahead forecast uses NAM weather forecasting and a streamer RTM. The 5-km grid NAM forecast 

that runs at 06z daily is employed. Two NAM forecast windows, 0 to 23 hours ahead and 24 to 47 hours ahead, 
are used to derive solar irradiance forecasts for the two types of day-ahead (0 to 23 hours and 24 to 47 hours 
ahead) baseline values.  

The vertical profiles (39 vertical levels) of pressure, temperature, geopotential height, humidity, cloud liquid 
water content, cloud ice content, and surface albedo are taken from the NAM forecast. The climatological 
monthly average of ozone concentration and aerosol optical depth are taken from the MODIS (Moderate 
Resolution Imaging Spectroradiometer) data set (Justice et al., 1998). Together these form the input for the 
streamer RTM (Key and Schweiger, 1998), which solves the radiative transfer equation for the plane-parallel 
geometry using the spherical harmonic discrete ordinate method to calculate GHI and direct normal irradiance 
(DNI) at the Earth’s surface. The GHI, DNI, ambient temperature (2 m above ground), and wind speed (10 m 
above ground) are then fed into an irradiance-to-power model to derive forecasted AC PV power. The 
irradiance-to-power model consists of two parts: (i) the PV modules are modeled using the California Energy 
Commission (CEC) model, and (ii) the inverters are modeled using the Sandia National Laboratories model, 
both of which are implemented in PV-Lib (Stein, 2012).  

2.2.2. Persistence for 15MA, 1HA, and 4HA solar forecasting 
The 15MA, 1HA, and 4HA forecasts were synthesized using a persistence of cloudiness approach, as shown 

in Fig. 2. In this method, the solar power index (SPI) is first calculated, which represents the ratio between 
actual power (P) and clear-sky power (PCS). Then, the solar forecast power is estimated by modifying the 
current power output by the expected change in clear-sky output. For the 1HA persistence of cloudiness 
approach, the forecast solar power at time t+1 can be calculated as follows. 

[ ])()1()()()1( tPtPtSPItPtP CSCS −+×+=+  (1) 

where )1( +tPCS  and )(tPCS  represent the clear sky solar power at time t+1 and t, respectively; )(tP  is the 
actual solar power output at time t; and )(tSPI  is solar power index at time t. 

 
Figure 2. Persistence of cloudiness approach (Lew et al., 2013) 

 
In this work, the clear-sky power 𝑃𝑃𝐶𝐶𝐶𝐶(𝑡𝑡) is calculated for all test site locations following two steps. First, the 

standard summer atmospheric profile of temperature, pressure, and humidity without clouds is assumed. 
Streamer RTM (Key and Schweiger, 1998) is employed to calculate the Earth’s surface-level GHI and DNI. 
Second, the CEC irradiance-to-power model, which is implemented in PV-Lib, is used to calculate AC PV 
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output from GHI and DNI. In the irradiance-to-power calculation, we assume an ambient temperature of 300 K 
and no wind. 

2.3. Methodology for Determining Target Metrics 

The baseline forecasting is divided into two parts: non-ramping period and ramping period. The target values 
of solar forecasting metrics are derived by (i) for the non-ramping period, applying uniform forecasting 
improvements by x% based on the baseline forecasting; (ii) for the ramping period, applying ramp forecasting 
improvements by y% based on the baseline forecasting; and (iii) deriving a complete set of target metrics. The 
values of x% and y% are determined based on the economic impacts of improved solar power forecasting (i.e., a 
reduction of 25% in reserve levels, which is based on a project partner utility consensus). 

Two types of forecasting improvements are implemented. The improvements are categorized by the 
appearance of large solar ramps, which are commonly one of the biggest concerns of high-penetration solar 
power scenarios. First, the start and end points of all significant ramps are extracted using the swinging door 
algorithm (see Section 2.3.1). The definition of significant ramps is based on the magnitude of solar power 
change. These improvements are generated through the following procedures: 

• Uniform improvements of the time series excluding ramping periods: The forecast errors of the time 
series when there is not a significant ramp are uniformly decreased by a percentage (x%). 

• Ramp forecasting magnitude improvements: Only significant ramps that are identified as a change 
greater than or equal to a threshold value (θ) are modified in the improved forecasts. The forecast errors 
of the time series with ramps are decreased by a percentage (y%). 

• Ramp forecasting threshold: The ramp forecasting threshold (θ) is set as 10% of the solar power capacity 
in this paper. 

 
Figure 3 illustrates the overall structure of the methodology to determine target metrics for solar forecasting.  

(a) First, the reserve cost of the baseline solar forecasting (𝐶𝐶𝑏𝑏 ) is calculated, and a 25% reduction is 
assumed for the target reserve level (𝐶𝐶𝑡𝑡).  

(b) Second, a set of (𝑁𝑁) combinations of x% uniform forecasting improvement and y% ramp forecasting 
magnitude improvements are applied to the baseline forecasting. The reserve costs (𝐶𝐶𝑖𝑖) from the 𝑁𝑁 
improved solar forecasting combinations are calculated. The N combinations are generated using a 
design of experiments method. In this paper, the Sobol’s quasi-random sequence generator, a widely 
used method in design of experiments (Forrester et al., 2008; Zhang et al., 2013), was adopted to 
generate the N combinations. Sobol’s sequences use a base of two to form successively finer uniform 
partitions of the unit interval and reorder the coordinates in each dimension. The Sobol sequence 
generator produces highly uniform samples of the unit hypercube. Note that other design of 
experiments methods can also be used, e.g., Latin hypercube sampling, fractional factorial, central 
composite, uniform designs, etc. 

(c) Ideally when we reach target there would have a difference of zero, but because of the discrete set of N 
combinations, there will be small errors and the errors will be within a small bound. As N approaches 
infinity, the error would exactly equal zero. In this study, the set of x% and y% values, with the 
smallest difference between the ideal target reserve cost (𝐶𝐶𝑡𝑡) and the reserve cost from the improved 
solar forecasting (𝐶𝐶𝑖𝑖), is then selected for deriving the final target value for the solar forecasting. It is 
important to note that other sets of x% and y% combinations can also be used if the selection criterion 
is changed. 

(d) Finally, the target solar forecasting is derived based on the selected set of x% and y% in the previous 
step. A complete set of target metrics is calculated based on the target solar forecasting value. 
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Figure 3. Overall structure to determine target metrics 

 
It is important to note that proposed methodology is readily to be extended to arbitrary targets. In addition to 

the reserve cost used in this paper, the target can be extended to production cost, solar power curtailment, power 
system reliability, and other important power system metrics.  

2.3.1. Swinging Door Algorithm 
The swinging door algorithm extracts ramp periods in a time series of power signals, by identifying the start 

and end points of each ramp. The algorithm allows for consideration of a threshold parameter influencing its 
sensitivity to ramp variations. The only tunable parameter in the algorithm is the width of a “door”, represented 
by ε in Fig. 4. The parameter ε directly characterizes the threshold sensitivity to noise and/or insignificant 
fluctuations to be specified. With a smaller ε value, many small ramps will be identified; with a larger ε value, 
only a few large ramps will be identified. A detailed description of the swinging door algorithm can be found in 
(Bristol, 1990; Florita et al., 2013). 

 
Figure 4. The swinging door algorithm for the extraction of ramps in power from the time series (Florita et al., 2013) 

2.3.2. Flexibility Reserves for 15MA, 1HA, 4HA, and DA Forecasting 
The reduction in the amount of reserves that must be carried to accommodate the uncertainty of solar power 

output is anticipated to be one of the significant cost savings associated with improved solar power forecasting. 
An advanced reserve calculation algorithm is thus applied to estimate the reserve reductions that various solar 
power forecasting improvements would allow. This methodology was originally developed during the Western 
Wind and Solar Integration Study Phase 2 (WWSIS-2) (Lew et al., 2013). Improved forecasting (on average) 
reduces the amount of reserves that must be held, and various types of flexibility reserves are defined by: 
• For 15MA, 1HA, and 4HA solar power forecasting, spinning reserves are used to derive the target solar 

forecasting values. Spinning reserves represent the online capacity that can be deployed very quickly 
(seconds to minutes) to respond to variability. In this study, the spinning reserve for 0- to 4-hours-ahead 
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forecasting (𝑅𝑅𝑠𝑠𝐻𝐻𝐻𝐻) is defined as the 95% confidence interval (∅95) of solar power forecast errors (𝑒𝑒𝐻𝐻𝐻𝐻) at the 
15MA, 1HA, or 4HA horizon. 

𝑅𝑅𝑠𝑠𝐻𝐻𝐻𝐻 = ∅95(𝑒𝑒𝐻𝐻𝐻𝐻) (2) 

• For DA solar forecasting, both spinning and non-spinning reserves are used to derive the solar forecasting 
target. Non-spinning reserves represent the off-line or reserved capacity, or load resources (interruptible 
loads), capable of deploying within 30 minutes for at least 1 hour. In this paper, the spinning reserve for the 
DA forecasting (𝑅𝑅𝑠𝑠𝐷𝐷𝐷𝐷) is defined as the 70% confidence interval (∅70) of the DA solar power forecast errors 
(𝑒𝑒𝐷𝐷𝐷𝐷) (Hodge et al., 2015). The non-spinning reserve (𝑅𝑅𝑛𝑛𝑛𝑛𝐷𝐷𝐷𝐷) is defined by the difference between the 95% 
confidence interval (∅95) and the 70% confidence interval (∅70) of the DA solar power forecast errors (𝑒𝑒𝐷𝐷𝐷𝐷) 
(Hodge et al., 2015). 

𝑅𝑅𝑠𝑠𝐷𝐷𝐷𝐷 = ∅70(𝑒𝑒𝐷𝐷𝐷𝐷) (3) 

𝑅𝑅𝑛𝑛𝑛𝑛𝐷𝐷𝐷𝐷 = ∅95(𝑒𝑒𝐷𝐷𝐷𝐷) − ∅70(𝑒𝑒𝐷𝐷𝐷𝐷) (4) 

Considering the cost of holding and deploying reserves, this study assumes that the cost of non-spinning 
reserve per MW (𝐶𝐶𝑛𝑛𝑛𝑛𝑀𝑀𝑀𝑀) is twice the cost of spinning reserve per MW (𝐶𝐶𝑠𝑠𝑀𝑀𝑀𝑀): 

𝐶𝐶𝑛𝑛𝑛𝑛𝑀𝑀𝑀𝑀 = 2 × 𝐶𝐶𝑠𝑠𝑀𝑀𝑀𝑀 (5) 
Equation (5) is derived based on the (i) start costs of two types of generators used for spinning and non-spinning 
reserves (gas turbine and oil turbine); and (ii) heat rates and fuel costs of four fuel types (biomass, nuclear, coal, 
and combined cycle). In this paper, the costs are selected according to the ISO-New England (ISO-NE) system. 

3. Case Studies: System Operators, Utilities, and Energy Producers 

Major customers for solar forecasting technologies are utility companies, independent system operators 
(ISOs), distribution system operators, etc. As solar penetration levels increase, solar forecasting will become 
more important to solar energy producers and solar power plant developers. The baseline and target values will 
be determined for different geographic and energy-market regions to evaluate the versatility of the technology. 

3.1. Regional and Point PV Power Forecasts Scenarios 

From the spatial point of view, there are two distinct types of test cases for the baseline and target values: 
point (single PV plant) and regional. In the point case, we are able to gather detailed information about the 
operational configuration of a particular PV plant (e.g., PV panel and inverter types). In conjunction with 
atmospheric estimates throughout the plant, we can perform physics-based numerical forecasts of the power 
production at the plant. We can also validate the point forecasts by using the observed power production. In the 
regional case, it may be impractical to gather the operational configurations for the multitude of solar PV 
producers in the region; however, an empirical relationship between the regional power production and the solar 
irradiance fields can be estimated. 

Three PV plants were chosen among hundreds of sites available by the solar utilities in the Watt-sun (Lu et 
al., 2015a; 2015b) research consortium as point test cases: Smyrna, Green Mountain Power (GMP), and Tucson 
Electric Power (TEP). The selection was based on the best quality, continuity, and variety of power production 
observations at the sites. In addition, two regional test cases, ISO-New England (ISO-NE) and California-ISO 
(CAISO) were chosen to cover two distinct atmospheric conditions: a cloudier and more humid climate for the 
ISO-NE region, in contrast to relatively drier climate in the CAISO region. A few assumptions were made: (i) 
data points at nighttime were removed when the actual or forecasted power was zero; (ii) hourly point forecasts 
were used for DA, 4HA, and 1HA forecasts; (iii) 15-minute average forecasts were used for 15MA forecasts; 
and (iv) a set of 100 combinations of x% and y% were evaluated for 5 case studies (CAISO, ISO-NE, TEP, 
GMP, and Smyrna). The locations of the three point and two regional test cases are shown in Fig. 5. Table 4 
lists the details of the five cases, including the forecast horizons, irradiance and power forecasts methods, 
validation methods and periods. Due to data limitations, the evaluation period is mainly during the 
summer and fall seasons. Solar forecasting during the winter season may be slightly different based on 
the geographic locations, such as the tendency for over-forecasting or under-forecasting. 



Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, 
accepted manuscript. The published version of the article is available from the relevant publisher. 

 
Figure 5. Locations of the three point and two regional test cases 

 
Table 4. Test cases of system operators, utilities, and energy producers 

Test 
Case Role 

Forecast Horizon 
Irradiance 
Forecasts 

Power 
Forecasts Validation Evaluation 

Period 
15MA, 

1HA, and 
4HA 

Day-
ahead 

ISO-NE System 
operator Persistence NAM Streamer RTM N/A GHI –12 MesoWest 

sites 
03-May-2013 to 

30-Oct-13 

CAISO System 
operator Persistence NAM Streamer RTM Linear least 

square fit Aggregated Power 04-May-2013 to 
30-Oct-13 

GMP Utility Persistence NAM Streamer RTM PV-Lib Direct Power 
measurements 

03-May-2013 to 
30-Oct-13 

TEP Utility Persistence NAM Streamer RTM PV-Lib Direct Power 
measurements 

02-June-2013 to 
30-Oct-13 

Smyrna Energy 
producer Persistence NAM Streamer RTM PV-Lib Direct Power 

measurements 
03-May-2013 to 

30-Oct-13 

3.2.  Baseline and Target Metrics Values for Multiple Scenarios 

3.2.1. CAISO Baseline and Target Metrics Values 
For CAISO, data is available in 1-hour intervals in energy production summed throughout the CAISO region 

(OASIS Website, http://oasis.caiso.com/). The actual and forecasted data used in this case are between 04-May-
2013 and 30-Oct-13. Solar power is derived by assuming a constant power generation within one hour. 
The total capacity considered in this study is approximately 4,100 MW. For CAISO, the forecasts of 
aggregated hourly solar power output are derived from the NAM model without PV specification using a 
persistence-weighted-by-irradiance method. Namely, one starts with the measured solar power output of 
the current hour in a day (Pc) as well as the NAM GHI forecast (averaged over the entire CAISO service 
territory) of the current hour (GHIc) and GHI forecast of the same hour one or two days ahead (GHIda). 
The day-ahead solar power output (Pda) is then computed as: 𝑷𝑷𝒅𝒅𝒅𝒅 = 𝑷𝑷𝒄𝒄 × 𝑮𝑮𝑮𝑮𝑮𝑮𝒅𝒅𝒅𝒅 𝑮𝑮𝑮𝑮𝑮𝑮𝒄𝒄⁄ . Moreover, in 
order to remove systematic bias-error, the day-ahead solar energy forecast, derived using either PV-lib or 
persistence-weighted-by-irradiance as noted above, are corrected using linear regression with historical 
data from three days immediately preceding the forecast. 

Figure 6 shows the amounts of the baseline and target reserves for different forecast horizons. The baseline 
reserves at different timescales are shown on the top the figure (e.g., 227.75 MW and 448.25 MW in Fig. 6(a)); 
the target reserves are listed on the bottom of the figure (e.g., 168.17 MW and 335.48 MW in Fig. 8(a)); the 
percentages of the uniform and ramp forecasting improvement are listed in the middle (e.g., 25.13% and 30.88% 
in Fig. 6(a)). For DA forecasts in Fig. 6(a), the uniform forecasting improvement and ramp forecasting 
improvement were determined based on the combined reduction (25%) in spinning and non-spinning reserves 
costs. For the 15MA, 1HA, and 4HA forecasts, the improvements were determined based only on spinning 
reserves. 
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                             (a) Day-ahead forecasts at CAISO                                               (b) 15MA, 1HA, and 4HA forecasts at CAISO 

Figure 6. Baseline and target reserves values; uniform and ramp forecasting improvements were determined based on 25% reduction in 
reserve costs 

Figures 7(a) and 7(b) illustrate the distributions of solar power forecast errors for the baseline and target 
forecasting, respectively. It shows that (i) the 15MA forecasts perform the best among all forecast horizons, as 
shown by the peak of the distribution, and (ii) the distribution of the target forecast errors is relatively skinnier 
than the corresponding distribution of the baseline forecast errors. 

 

  
                                                          (a) Baseline                                                                                     (b) Target 

Figure 7. Distribution of baseline and target solar power forecast errors at DA, 4HA, 1HA, and 15MA forecast horizons (CAISO) 
 
The baseline values and target metrics are summarized in Table 5. The NAM model for the DA forecasts and 

the persistence model for the 4HA, 1HA, and 15MA forecasts are accurate with very high correlation 
coefficients and small RMSE and MAPE values. The relatively larger RMSE and MAE values in the 4HA 
forecasts are partially attributed to the inherent assumption that indirect light and panel temperature changes of 
more than 4 hours are not accounted for. The 15MA baseline forecast has a high accuracy at 1% NRMSE by 
capacity, which indicates that the baseline persistence model is a strong predictor of PV output. Such a small 
error is likely an indication that geographic averaging across a large region cancels the errors. It is interesting to 
notice that reducing the spinning reserve costs (by 25%) using the Fig. 3 algorithm, may lead to a specific metric 
being worsened. Target values are better than baseline values for most metrics. However, the target renyi 
entropy values are slightly increased compared to the baseline for DA forecast horizons. This is because the 
renyi entropy utilizes all of the information present in the forecast error distribution. MBE and standard 
deviation reflect the improvement based on the proposed reserve methodology; other information present in the 
forecast error distribution (e.g., skewness and kurtosis) may not necessarily reflect the improvement. 



Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, 
accepted manuscript. The published version of the article is available from the relevant publisher. 

Table 5. Baseline and target metrics values for CAISO at different forecast horizons 

Metrics 
DA  

(24-47) 
Baseline 

DA  
(24-47) 
Target 

DA  
(0-23) 

Baseline 

DA  
(0-23) 
Target 

4HA 
Baseline 

4HA 
Target 

1HA  
Baseline 

1HA 
Target 

15MA  
Baseline 

15MA 
Target 

Correlation coefficient 0.97 0.98 0.98 0.99 0.96 0.97 0.98 0.99 1.00 1.00 
RMSE (MW) 168.39 120.05 150.54 110.82 184.62 149.17 119.91 90.75 29.01 21.42 
NRMSE by capacity 0.04 0.03 0.04 0.03 0.04 0.04 0.03 0.02 0.01 0.01 
MaxAE (MW) 2728.00 1777.89 860.02 619.10 1736.00 1561.86 1252.63 982.93 313.16 276.12 
MAE (MW) 98.56 71.74 98.91 72.68 111.97 85.35 93.98 70.95 22.24 15.45 
MAPE by capacity 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.01 0.00 
MBE (MW) -8.25 -6.55 -5.72 -4.46 4.45 4.38 16.74 12.42 4.43 3.35 
KSIPer (%) 16.61 14.12 16.36 14.71 31.02 22.68 38.91 31.88 16.93 13.82 
OVERPer (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 
Standard dev. (MW) 168.25 119.92 150.47 110.76 184.63 149.16 118.77 89.91 28.68 21.16 
4RMQE (MW) 472.71 311.54 237.20 174.47 371.25 326.40 204.29 158.20 50.08 42.77 
N4RMQE by capacity 0.11 0.07 0.06 0.04 0.09 0.08 0.05 0.04 0.01 0.01 
95th percentile (MW) 304.10 227.02 339.69 251.51 386.30 298.80 229.08 175.52 55.85 42.29 
Renyi entropy 3.09 3.24 4.21 4.23 3.44 3.13 4.54 4.51 4.42 4.07 
NRMSE by clear sky power 0.31 0.22 0.26 0.19 0.27 0.22 0.19 0.14 0.02 0.02 
MAPE by clear sky power 0.18 0.13 0.17 0.13 0.16 0.12 0.15 0.11 0.02 0.01 

3.2.2. ISO-NE Baseline and Target Metrics Values 
For ISO-NE, solar generation is mostly behind the meter and interconnected to the distribution system, so the 

value of an improved forecast technology will lead to improved net load (i.e., the load minus the PV) forecasting 
– especially for the day-ahead unit commitment process. Currently, in this case study, the metrics were 
calculated based on solar irradiance instead of power due to the data access limitation. Note that the spin and 
non-spin reserves are not the best metric for irradiance, but we kept the methodology the same for the sake of 
consistency. The actual and forecasted data used in this case are between 03-May-2013 and 30-Oct-13. The 
baseline and target metrics for ISO-NE are summarized in Table 6. The capacity used for normalization is 1000 
W/m2. It is observed that DA (both 0-23 and 24-47 hours ahead) baseline forecasts performed better than the 
4HA baseline forecasts. This can be partially attributed to the cloudy weather of ISO-NE region; the persistence 
forecast is significantly affected by the cloud movement.  It is important to note that for the ISO-NE case, the 
irradiance is calculated by averaging a set of sites. However, since the available sites are closely located in a 
small geographical region and their irradiance values are highly correlated. In the CAISO case much of the short 
term variability is smoothed out by geographic diversity. The MBE values of all forecast horizons are positive, 
indicating an over-forecasting tendency at all forecast horizons; the MBE values of 4HA forecasts (both baseline 
and target) are larger than those of other forecast horizons. 

Figure 8 shows the baseline and target reserves values (in terms of irradiance) at different forecast horizons. 
To achieve the target reserves, there is more ramp forecasting improvement than uniform improvement for DA 
and 4HA forecasts, and there is more uniform improvement than ramp forecasting improvement for shorter 
timescale forecasts (1HA and 15MA). Figures 9(a) and 9(b) illustrate the distributions of solar power forecast 
errors for ISO-NE baseline and target forecasting, respectively. 

  
(a) Day-ahead forecasts at ISO-NE (b) 15MA, 1HA, and 4HA forecasts at ISO-NE 

Figure 8. Target reserves values based on uniform and ramp forecasting improvement (ISO-NE) 
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(a) Baseline (b) Target 

Figure 9. Distribution of baseline and target solar power forecast errors at DA, 4HA, 1HA, and 15MA forecast horizons (ISO-NE) 

Table 6. Baseline and target metrics values for ISO-NE at different forecast horizons 

Metrics 
DA  

(24-47) 
Baseline 

DA  
(24-47) 
Target 

DA  
(0-23) 

Baseline 

DA  
(0-23) 
Target 

4HA 
Baseline 

4HA 
Target 

1HA  
Baseline 

1HA 
Target 

15MA  
Baseline 

15MA 
Target 

Correlation coefficient 0.80 0.90 0.86 0.93 0.73 0.85 0.96 0.97 1.00 1.00 
RMSE (W/m2) 152.55 115.75 122.27 89.73 192.21 143.12 73.25 55.19 18.32 13.68 
NRMSE by capacity 0.15 0.12 0.12 0.09 0.19 0.14 0.07 0.06 0.02 0.01 
MaxAE (W/m2) 617.54 528.96 513.11 369.03 715.12 553.44 357.36 265.00 129.05 91.99 
MAE (W/m2) 119.13 88.80 92.58 67.83 147.58 107.52 52.99 40.12 13.02 9.81 
MAPE by capacity 0.12 0.09 0.09 0.07 0.15 0.11 0.05 0.04 0.01 0.01 
MBE (W/m2) 24.05 19.62 15.98 14.80 52.87 39.39 18.57 14.12 4.60 3.51 
KSIPer (%) 170.83 148.47 147.98 121.29 144.25 131.54 60.92 47.50 20.74 17.21 
OVERPer (%) 89.12 67.55 68.99 47.07 75.54 62.44 7.85 4.48 0.00 0.00 
Standard dev. (W/m2) 150.69 114.11 121.25 88.52 184.85 137.63 70.87 53.36 17.73 13.23 
4RMQE (W/m2) 212.81 165.39 175.62 128.06 261.63 198.49 107.36 80.52 28.17 20.91 
N4RMQE by capacity 0.21 0.17 0.18 0.13 0.26 0.20 0.11 0.08 0.03 0.02 
95th percentile (W/m2) 315.68 234.01 254.17 184.18 380.34 286.38 154.16 116.37 38.41 28.55 
Renyi entropy 5.29 5.11 5.18 5.16 5.22 5.10 4.74 4.80 4.42 4.48 
NRMSE by clear sky irradiance 0.28 0.22 0.22 0.16 0.30 0.23 0.12 0.09 0.03 0.02 
MAPE by clear sky irradiance 0.22 0.17 0.17 0.12 0.23 0.17 0.09 0.07 0.02 0.02 

3.2.3. TEP Baseline and Target Metrics Values 
The PV power data collected from Tucson Electric Power (TEP) is with 15-minute interval and the capacity 

is 25 MW. The data shows a large number of clear-sky days which enable us to develop an improved clear-sky 
model for single-axis tracking. The actual and forecasted data used in this case are between 02-June-2013 and 
30-Oct-13. Table 7 lists the baseline values and target metrics at different forecast horizons. Baseline values of 
15 MA and 1HA forecasts present large correlation coefficients, because the persistence model benefits from 
many consecutive clear-sky days at TEP. The TEP data shows a strong effect of panel temperature especially in 
summer. Though a number of consecutive clear-sky days exist at the TEP region, the persistence method, which 
is generally more accurate in clear-sky days, is significantly affected by the large panel temperature difference 
over 4 hours. 

Figure 10 shows the baseline and target reserve requirements. To achieve the target reserves, there is 
generally more uniform improvement than ramp forecasting improvement (for the DA, 4HA, and 15 MA 
forecasts). Figures 11(a) and 11(b) illustrate the distributions of solar power forecast errors for baseline and 
target forecasting, respectively. 



Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, 
accepted manuscript. The published version of the article is available from the relevant publisher. 

  
(a) Day-ahead forecasts at TEP (b) 15MA, 1HA, and 4HA forecasts at TEP 

Figure 10. Target reserves values based on uniform and ramp forecasting improvement (TEP) 

  
(a) Baseline (b) Target 

Figure 11. Distribution of baseline and target solar power forecast errors at DA, 4HA, 1HA, and 15MA forecast horizons (TEP) 

Table 7. Baseline and target metrics values for TEP at different forecast horizons 

Metrics 
DA  

(24-47) 
Baseline 

DA  
(24-47) 
Target 

DA  
(0-23) 

Baseline 

DA  
(0-23) 
Target 

4HA 
Baseline 

4HA 
Target 

1HA  
Baseline 

1HA 
Target 

15MA  
Baseline 

15MA 
Target 

Correlation coefficient 0.63 0.78 0.59 0.77 0.65 0.78 0.85 0.91 0.94 0.97 
RMSE (MW) 5.30 3.99 5.82 4.21 5.00 3.68 3.12 2.34 2.04 1.55 
NRMSE by capacity 0.21 0.16 0.23 0.17 0.20 0.15 0.12 0.09 0.08 0.06 
MaxAE (MW) 18.09 15.64 22.57 18.60 17.86 13.75 15.66 13.00 16.60 13.86 
MAE (MW) 3.56 2.67 4.03 2.94 3.62 2.67 2.09 1.58 1.11 0.78 
MAPE by capacity 0.14 0.11 0.16 0.12 0.14 0.11 0.08 0.06 0.04 0.03 
MBE (MW) -1.23 -0.85 -1.60 -1.07 -0.34 -0.27 -0.21 -0.15 0.04 0.03 
KSIPer (%) 180.43 160.49 232.49 193.20 112.23 80.25 75.36 49.03 40.29 23.13 
OVERPer (%) 99.06 81.51 148.15 112.13 36.26 17.93 14.28 6.33 12.31 1.52 
Standard dev. (MW) 5.16 3.90 5.59 4.08 5.00 3.68 3.12 2.33 2.04 1.55 
4RMQE (MW) 7.80 5.90 8.20 5.95 7.16 5.24 4.92 3.73 3.94 3.15 
N4RMQE by capacity 0.31 0.24 0.33 0.24 0.29 0.21 0.20 0.15 0.16 0.13 
95th percentile (MW) 12.62 9.44 12.58 9.21 11.09 8.28 6.59 5.06 4.60 3.46 
Renyi entropy 4.99 4.79 4.92 4.75 5.18 5.12 4.19 4.28 3.02 2.69 
NRMSE by clear sky power 0.34 0.25 0.39 0.28 0.30 0.22 0.19 0.14 0.13 0.10 
MAPE by clear sky power 0.23 0.17 0.27 0.20 0.22 0.16 0.13 0.10 0.07 0.05 

3.2.4. GMP Baseline and Target Metrics Values 
GMP has relatively high solar penetration compared to CAISO and ISO-NE. Currently there is 

approximately 47 MW PV installed behind the meter, which represents about 5% of peak load in the GMP 
region. GMP has goals to make renewables 20% of total annual energy by 2017 and 90% by 2050. The actual 
and forecasted data used in this case are between 03-May-2013 and 30-Oct-13. The day-ahead forecasts without 
linear regression at GMP have large errors (23% NRMSE by capacity for both 1- and 2-day ahead forecasts). 
This is likely due to the highly variable clouds, changing weather, and mountains in the region. The day-ahead 
forecasts were significantly improved after the first order machine learning (linear regression). Table 8 shows 
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the baseline and target values at different forecast horizons. It is shown that most target metrics are improved 
from baselines. 

Figure 12 shows the baseline and target reserves. For all forecast horizons, there are more uniform 
improvements than the ramp forecasting improvements. Figures 13(a) and 13(b) illustrate the distributions of 
solar power forecast errors for baseline and target forecasting, respectively. The 4HA forecast tends to 
underforecast the power generation compared to other forecast horizons, which might be due to morning clouds 
in the region and the shading from mountains.  

  
(a) Day-ahead forecasts at GMP (b) 15MA, 1HA, and 4HA forecasts at GMP 

Figure 12. Target reserves values based on uniform and ramp forecasting improvement (GMP) 

  
(a) Baseline (b) Target 

Figure 13. Distribution of baseline and target solar power forecast errors at DA, 4HA, 1HA, and 15MA forecast horizons (GMP) 

Table 8. Baseline and target metrics values for GMP at different forecast horizons 

Metrics 
DA  

(24-47) 
Baseline 

DA  
(24-47) 
Target 

DA  
(0-23) 

Baseline 

DA  
(0-23) 
Target 

4HA 
Baseline 

4HA 
Target 

1HA  
Baseline 

1HA 
Target 

15MA  
Baseline 

15MA 
Target 

Correlation coefficient 0.67 0.82 0.72 0.85 0.66 0.80 0.91 0.95 0.94 0.97 
RMSE (MW) 9.44 7.19 8.63 6.47 10.87 8.02 5.21 3.83 4.29 3.23 
NRMSE by capacity 0.20 0.15 0.18 0.14 0.23 0.17 0.11 0.08 0.09 0.07 
MaxAE (MW) 38.10 30.06 30.05 24.45 45.43 35.00 29.10 22.42 31.16 23.81 
MAE (MW) 7.03 5.35 6.21 4.69 7.89 5.74 3.64 2.64 2.42 1.73 
MAPE by capacity 0.15 0.11 0.13 0.10 0.17 0.12 0.08 0.06 0.05 0.04 
MBE (MW) 0.07 0.21 -0.36 -0.21 -3.76 -2.68 -1.25 -0.90 -0.07 -0.04 
KSIPer (%) 138.02 147.06 108.81 119.86 213.14 148.51 79.73 57.25 10.06 12.87 
OVERPer (%) 63.21 67.18 32.46 42.56 126.45 62.94 13.99 1.19 0.00 0.00 
Standard dev. (MW) 9.45 7.19 8.63 6.47 10.20 7.56 5.06 3.73 4.29 3.23 
4RMQE (MW) 13.42 10.25 12.28 9.17 15.91 11.98 8.00 5.99 7.77 6.09 
N4RMQE by capacity 0.28 0.22 0.26 0.19 0.34 0.25 0.17 0.13 0.16 0.13 
95th percentile (MW) 20.38 15.31 19.51 14.51 23.70 17.32 11.38 8.55 10.04 7.53 
Renyi entropy 5.33 5.24 5.34 5.31 4.95 4.86 4.56 4.45 3.40 3.17 
NRMSE by clear sky power 0.34 0.26 0.35 0.27 0.41 0.30 0.21 0.15 0.18 0.13 
MAPE by clear sky power 0.25 0.19 0.26 0.19 0.29 0.21 0.14 0.10 0.10 0.07 
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3.2.5. Smyrna Baseline and Target Values 
The developed reserve-based method to determine target forecasts is more suitable for large regions (such as 

ISOs and utilities), since it is not common to hold reserves at individual solar plant level. However, the developed 
method is also applicable to individual plant, and this Smyrna case study is to further evaluate the effectiveness the 
developed method. Smyrna site has a 1 MW PV installation. The actual and forecasted data used in this case are 
between 03-May-2013 and 30-Oct-13. The baseline and target metrics are summarized in Table 9. It is observed 
that the 1- and 2-day ahead baseline forecasts have similar levels of errors, e.g., 17% NRMSE by capacity, 0.17 
standard deviation, etc. The baseline and target reserves are shown in Fig. 14. Figures 15(a) and 15(b) illustrate the 
distributions of solar power forecast errors for baseline and target forecasting, respectively. 

  
(a) Day-ahead forecasts at Smyrna (b) 15MA, 1HA, and 4HA forecasts at Smyrna 

Figure 14. Target reserves values based on uniform and ramp forecasting improvement (Smyrna) 

  
(a) Baseline (b) Target 

Figure 15. Distribution of baseline and target solar power forecast errors at DA, 4HA, 1HA, and 15MA forecast horizons (Smyrna) 

Table 9. Baseline and target metrics values for Smyrna at different forecast horizons 

Metrics 
DA  

(24-47) 
Baseline 

DA  
(24-47) 
Target 

DA  
(0-23) 

Baseline 

DA  
(0-23) 
Target 

4HA 
Baseline 

4HA 
Target 

1HA  
Baseline 

1HA 
Target 

15MA  
Baseline 

15MA 
Target 

Correlation coefficient 0.71 0.85 0.72 0.85 0.70 0.83 0.91 0.95 0.92 0.96 
RMSE (MW) 0.17 0.13 0.17 0.12 0.19 0.14 0.10 0.07 0.05 0.04 
NRMSE by capacity 0.17 0.13 0.17 0.12 0.19 0.14 0.10 0.07 0.05 0.04 
MaxAE (MW) 0.56 0.46 0.65 0.55 0.72 0.57 0.44 0.36 0.65 0.45 
MAE (MW) 0.13 0.10 0.12 0.09 0.14 0.11 0.07 0.05 0.03 0.02 
MAPE by capacity 0.13 0.10 0.12 0.09 0.14 0.11 0.07 0.05 0.03 0.02 
MBE (MW) 0.01 0.00 0.00 0.00 -0.09 -0.07 -0.03 -0.02 0.00 0.00 
KSIPer (%) 148.33 145.36 105.06 117.06 261.30 190.75 87.89 65.30 5.73 12.97 
OVERPer (%) 68.59 64.43 29.19 38.65 172.13 105.64 15.65 3.20 0.00 0.00 
Standard dev. (MW) 0.17 0.13 0.17 0.12 0.17 0.13 0.09 0.07 0.05 0.04 
4RMQE (MW) 0.24 0.18 0.24 0.18 0.28 0.21 0.15 0.11 0.09 0.06 
N4RMQE by capacity 0.24 0.18 0.24 0.18 0.28 0.21 0.15 0.11 0.09 0.06 
95th percentile (MW) 0.37 0.27 0.36 0.27 0.43 0.32 0.22 0.17 0.11 0.08 
Renyi entropy 5.48 5.43 5.18 5.00 5.19 5.07 4.81 4.73 3.13 3.24 
NRMSE by clear sky power 0.32 0.24 0.33 0.25 0.35 0.26 0.19 0.14 0.10 0.07 
MAPE by clear sky power 0.24 0.18 0.24 0.18 0.26 0.19 0.13 0.10 0.06 0.04 
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3.3. Discussion on Baseline and Target PV Power Forecasting 

The baseline and target solar forecasting methodology were evaluated and applied to three photovoltaic 
plants (TEP, GMP, and Smyrna) and two ISOs (CAISO and ISO-NE). It is a complex task to determine the 
economic benefits of improved solar power forecasting. The proposed reserve-based methodology is arguably a 
reasonable methodology which can approximately quantify the economic benefits gained from improved solar 
forecasting. With the 25% reduction in reserves, other metrics were significantly improved. For example, at 
CAISO, the RMSE of day-ahead forecasts was reduced by 28.7%; the MAE was reduced by 27.2%; and the 
MBE was reduced by 20.6%. At ISO-NE, the RMSE of day-ahead forecasts was reduced by 24.1%; the MAE 
was reduced by 25.5%; and the MBE was reduced by 18.4%. These are significant to power system operators. 
Indeed one pathway to enable such needed improvement in forecasting is via machine learning technology. 
Towards this end, as part of the project work performed under the SunShot Initiative’s Improving the Accuracy 
of Solar Forecasting program, a system for improving solar forecast, Watt-sun, is being developed by this team 
(Lu et al., 2015a; 2015b). Watt-sun uses big-data information processing technologies and applies machine-
learnt, situation-dependent blending of multiple models to enhance system intelligence, adaptability and 
scalability. The baseline and target metrics developed in this paper are used to guide the development of the 
Watt-sun system. 

The 25% reduction in spinning reserve would be significant and constitutes an ambitious goal. The annual 
hourly average price of spinning reserves is $10.11 per MW in 2006 (CAISO, 2007). Using the proposed 
reserve reduction methodology, the day-ahead (24-47 hours) spinning reserve reduction is 57.29 MW for 
CAISO. With the improved solar forecasting, the annual cost saving of day-ahead spinning reserves would be 
approximately 5 million dollars. It is important to note that previous studies (Hodge et al., 2015) have found that 
reserve savings are only 5-10% of total savings from improved unit commitment and economic dispatch. The 
financial baseline and targets can be translated back to forecasting accuracy metrics and requirements, which 
will guide research on solar forecasting improvements towards the areas that are most beneficial to power 
systems operations. 

By comparing Tables 5–9, the forecast errors (e.g., NRMSE, MAPE, etc.) over large areas (CAISO and ISO-
NE) are smaller than those for individual solar plant. Such small errors are likely an indication that geographic 
averaging across a large region cancels the errors, showing the smoothing effect from geographic diversity for 
solar. Additionally, geographic smoothing over large areas means that large errors are less common in balancing 
areas or interconnection size areas. 

4. Conclusion 

The development of baseline and target values for solar forecasting is closely related to the objective of 
quantifying the economic benefit of solar forecasting, around which currently the industry has no consensus. 
This is not only because of the complicated hierarchy and structure of the electrical energy market, but also 
because of the lack of in-depth understanding about how forecast information may fit into the specific utility or 
ISO operational practices, which are often complex and unique to each organization. Our development of 
baseline values and target economic metrics for quantifying the benefits of the solar forecast system has been 
based on close collaboration with utility and ISO partners. 

Although solar forecasts are likely to have a multitude of economic benefits, the industry agrees that 
improved solar forecast accuracy will lead to a reduction in the amount of minimum reserves that must be 
carried to accommodate the uncertainty of solar power output. Toward this end, we have provided a 
methodology (Figure 3) to derive the required uniform and ramp forecast improvements to provide a certain 
percent reduction in spinning reserve costs. In this paper the example of 25% reduction is used, but this was for 
explanation purposes only. Further, the cost reduction need not be applied to spinning reserves only because 
other costs can be added. The step-by-step procedure in Figure 3 should still be followed, only with the new cost 
function. For the test cases in this paper, the actual amount of reduction in spinning and non-spinning reserves 
could have substantial financial impact: we note that even at present, the amount of reserve reduction for 
CAISO will be several hundred MW, which will correspond to an annual savings of millions of dollars. The 
savings will continue to grow in the next years as the level of solar power penetration increases in the region. 
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